Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal...Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
基金The National Natural Science Foundation of China under contract No.41275084the Key Program of National Natural Science Foundation of China under contract No.41030855
文摘Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ- ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be- low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter- hal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri- cal results ofF-scheme by usingWOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.