In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maxi...In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maximize the BS's energy efficiency(EE) while making full use of the relay's renewable energy and satisfying the specific average throughput requirements.In contrast to existing literature on energy harvesting system which only considers the radio transmission power,we take the static circuit power into account as well.We formulate the EE optimization problem and prove that the EE of the BS and relay are both quasiconvex in the instantaneous transmission rate.Then we divide the complex optimization problem into two point-to-point link level optimization parts and propose an energyefficient resource allocation(EERA) scheme in which power control and sleep mode management are jointly used.The simulation results demonstrate that EERA may achieve good energy saving effects.We also compare the EE of an energy harvesting relay system with a power-grid powered one and provide more insight into the EE problem of energy harvesting relay system.展开更多
In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the susta...In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.展开更多
基金supported by National programs for High Technology Research and Development(2012AA011402)National Basic Research Program of China(2012CB316002)National Nature Science Foundation of China(61172088)
文摘In this paper we consider data transmission in a decode-and-forward(DF)relay-assisted network in which the relay is energy harvesting(EH) powered while the base station(BS) is power-grid powered.Our purpose is to maximize the BS's energy efficiency(EE) while making full use of the relay's renewable energy and satisfying the specific average throughput requirements.In contrast to existing literature on energy harvesting system which only considers the radio transmission power,we take the static circuit power into account as well.We formulate the EE optimization problem and prove that the EE of the BS and relay are both quasiconvex in the instantaneous transmission rate.Then we divide the complex optimization problem into two point-to-point link level optimization parts and propose an energyefficient resource allocation(EERA) scheme in which power control and sleep mode management are jointly used.The simulation results demonstrate that EERA may achieve good energy saving effects.We also compare the EE of an energy harvesting relay system with a power-grid powered one and provide more insight into the EE problem of energy harvesting relay system.
基金supported by the National Natural Science Foundation of China ( NSFC)( No. 60902041)Chinese Academy of Sciences ( No. 2010045)the Ministry of Science and Technology( MOST) of China ( No. 2010DFB10410,No. 2009DFB13080 and No. 2009ZX03003-009)
文摘In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.