The polystyrene supported glutamic acid Schiff base complex of Mn ( Ⅱ ) (PS-Sal-Glue-Mn) was prepared with chloromethylated styrene polymer beads, 2,4-dihydroxybenzaldehyde, L-glutamic acid and manganese ( Ⅱ )...The polystyrene supported glutamic acid Schiff base complex of Mn ( Ⅱ ) (PS-Sal-Glue-Mn) was prepared with chloromethylated styrene polymer beads, 2,4-dihydroxybenzaldehyde, L-glutamic acid and manganese ( Ⅱ ) acetate tetrahyrate. The polymeric ligand and the complex were characterized by FT-IR, small area X-ray photoelectron spectroscopy (XPS) and 1CP-AES. In the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2-cyclohexen-l-ol (2), 2-cyclohexen-l-one (3) and 2-cyclohexen-1- hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-1-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.展开更多
The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The pol...The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The polymeric ligand and the complex were characterized by FT.IR,, small area X-ray photoelectron spectroscopy (XPS), and ICP-AES. in the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2.cyclohexen-l-ol (2), 2-cyclohexen-l-one (3)and 2-cyclohexen-1-hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-l-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.展开更多
Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were character...Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.展开更多
文摘The polystyrene supported glutamic acid Schiff base complex of Mn ( Ⅱ ) (PS-Sal-Glue-Mn) was prepared with chloromethylated styrene polymer beads, 2,4-dihydroxybenzaldehyde, L-glutamic acid and manganese ( Ⅱ ) acetate tetrahyrate. The polymeric ligand and the complex were characterized by FT-IR, small area X-ray photoelectron spectroscopy (XPS) and 1CP-AES. In the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2-cyclohexen-l-ol (2), 2-cyclohexen-l-one (3) and 2-cyclohexen-1- hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-1-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.
文摘The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The polymeric ligand and the complex were characterized by FT.IR,, small area X-ray photoelectron spectroscopy (XPS), and ICP-AES. in the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2.cyclohexen-l-ol (2), 2-cyclohexen-l-one (3)and 2-cyclohexen-1-hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-l-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.
基金The National Natural Science Foundation of China(20274034)
文摘Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.