The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between...The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.展开更多
In view of the importance of mafic dyke swarms and their contribution to current scientific problems relating to South China,herein,we present the findings of studies on twenty–five representative mafic dykes croppin...In view of the importance of mafic dyke swarms and their contribution to current scientific problems relating to South China,herein,we present the findings of studies on twenty–five representative mafic dykes cropping out in Hunan Province and Guangxi Zhuang Autonomous Region,within the southern Wuling Mountain gravity lineament,China.These results include new zircon LA-ICP-MS U-Pb age,whole rock geochemical,Sr-Nd-Pb isotopic,and zircon Hf isotopic data for these dykes.The dykes formed between 131.5±1.2 and 121.6±1.1 Ma,and have typical doleritic textures.They fall into the alkaline and shoshonitic series,are enriched in light rare earth elements(LREE),some large ion lithophile elements(LILE;e.g.,Rb,Ba,and Sr),Th,U,and Pb,and are depleted in Nb,Ta,Hf,and Ti.Moreover,the dolerites have high initial 87 Sr/86 Sr ratios(0.7055–0.7057),negativeεNd(t)and zirconεHf(t)values(-14.8 to-11.9,-30.4 to-14.9),and relatively constant initial Pb isotopic ratios(that are EM1-like,16.77–16.94,15.43–15.47,and 36.84–36.92 for 206 Pb/204 Pb,207 Pb/204 Pb,and 208 Pb/204 Pb,respectively).These results indicate that the dykes were likely derived from magma generated through low-degree partial melting(1.0%–10%)of an EM1-like garnet–lherzolite mantle source.The parental magmas fractionated olivine,clinopyroxene,plagioclase,and Ti-bearing phases with negligible crustal contamination,during ascent and dyke emplacement.Several possible models have been proposed to explain the origin of Mesozoic magmatism along the Wuling Mountain gravity lineament.Herein we propose a reasonable model for the origin of these mafic dykes,involving the collision between the paleo-Pacific Plate and South China,which led to subsequent lithospheric extension and asthenosphere upwelling,resulting in partial melting the underlying mantle lithosphere in the Early Cretaceous,to form the parental magmas to the WMGL mafic dykes,as studied.展开更多
基金supported by the Nanfan Special Project of Chinese Academy of Agricultural Sciences (Grant No. ZDXM2315)the National Natural Science Foundation of China (Grant Nos. 32372125, 31861143006, and 32188102)+2 种基金Special Support Program of Chinese Academy of Agricultural Sciences (Grant NO. NKYCLJ-C-2021-015)Specific Research Fund of the Innovation Platform for Academicians of Hainan Province2023 College Student Innovation and Entrepreneurship Project of Jiangxi Agricultural University, China (Grant No. S202310410095)
文摘The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.
基金supported by the National Natural Science Foundation of China(grant,41573022)。
文摘In view of the importance of mafic dyke swarms and their contribution to current scientific problems relating to South China,herein,we present the findings of studies on twenty–five representative mafic dykes cropping out in Hunan Province and Guangxi Zhuang Autonomous Region,within the southern Wuling Mountain gravity lineament,China.These results include new zircon LA-ICP-MS U-Pb age,whole rock geochemical,Sr-Nd-Pb isotopic,and zircon Hf isotopic data for these dykes.The dykes formed between 131.5±1.2 and 121.6±1.1 Ma,and have typical doleritic textures.They fall into the alkaline and shoshonitic series,are enriched in light rare earth elements(LREE),some large ion lithophile elements(LILE;e.g.,Rb,Ba,and Sr),Th,U,and Pb,and are depleted in Nb,Ta,Hf,and Ti.Moreover,the dolerites have high initial 87 Sr/86 Sr ratios(0.7055–0.7057),negativeεNd(t)and zirconεHf(t)values(-14.8 to-11.9,-30.4 to-14.9),and relatively constant initial Pb isotopic ratios(that are EM1-like,16.77–16.94,15.43–15.47,and 36.84–36.92 for 206 Pb/204 Pb,207 Pb/204 Pb,and 208 Pb/204 Pb,respectively).These results indicate that the dykes were likely derived from magma generated through low-degree partial melting(1.0%–10%)of an EM1-like garnet–lherzolite mantle source.The parental magmas fractionated olivine,clinopyroxene,plagioclase,and Ti-bearing phases with negligible crustal contamination,during ascent and dyke emplacement.Several possible models have been proposed to explain the origin of Mesozoic magmatism along the Wuling Mountain gravity lineament.Herein we propose a reasonable model for the origin of these mafic dykes,involving the collision between the paleo-Pacific Plate and South China,which led to subsequent lithospheric extension and asthenosphere upwelling,resulting in partial melting the underlying mantle lithosphere in the Early Cretaceous,to form the parental magmas to the WMGL mafic dykes,as studied.