In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
利用第六次国际耦合模式比较计划(CMIP6)中的18个模式,基于欧洲中期天气预报中心第五代再分析资料(ERA5)再分析数据对青藏高原夏季降水数据进行了偏差校正,并从平均降水和极端降水两方面评估了校正前后的CMIP6数据以及单个模式在1979-2...利用第六次国际耦合模式比较计划(CMIP6)中的18个模式,基于欧洲中期天气预报中心第五代再分析资料(ERA5)再分析数据对青藏高原夏季降水数据进行了偏差校正,并从平均降水和极端降水两方面评估了校正前后的CMIP6数据以及单个模式在1979-2014年的表现。研究结果表明,该校正方法高度依赖于用于偏差校正的ERA5再分析数据在研究区域的质量,尽管偏差校正后的青藏高原夏季平均降水的误差和误差率上有所改善,但在年际时间变化特征方面却不如偏差校正前的数据。大多数CMIP6模式能够较好地模拟1979-2014年青藏高原上由西北至东南逐渐递增的平均降水空间变化特征。偏差校正前的降水数据在高原上会出现显著的高估,误差率为60.4%,经过偏差校正后的数据相对观测数据误差降低,误差率为-13.9%,并且偏差校正后的数据与ERA5的平均误差仅为0.003 mm·d^(-1),与ERA5的空间相关性高达0.999。空间趋势方面,观测数据表明青藏高原大部分地区夏季降水在1979-2014年呈现轻微增加的趋势,只有东缘出现明显降低的趋势。偏差校正前后的数据都能够大致刻画出这一空间分布特征,然而,未经偏差校正的大多数单个CMIP6模式与ERA5的空间相关系数未超过0.5。与由独立观测降水数据的年际变化特征相比,偏差校正前的数据高估了高原上的降水量,而偏差校正后的数据相比观测结果则偏低。通过确定95%分位阈值选取了极端降水个例,其集合平均极端降水空间分布与年平均降水类似,也呈西北向东南递增的趋势。部分CMIP6模式较好地模拟了这一特征,如MRI-ESM2-0(The Meteorological Research Institute Earth System Model version 2.0)和ACCESSCM2(Australian Community Climate and Earth System Simulator Climate Model Version 2),与观测结果的空间相关系数分别为0.851和0.821。但偏差校正后的数据在空间相关性方面下降,由偏差校正前的0.861降为0.730,未能准确刻画高原极端降水阶梯式递增的特点。偏差校正后的极端降水数据误差分布与偏差校正前相似,偏低区域主要集中在高原南部腹地和东部。进一步的极端降水贡献率分析结果表明,观测结果与CMIP6降水数据均显示1979-2014年期间极端降水贡献率变化趋势不明显。单个CMIP6模式中,EC-Earth3-Veg(European Community Earth-Vegetation model version 3)和EC-Earth3(European Community Earth Model version 3)及CanESM5(The Canadian Earth System Model version 5)在多个统计评估指标上排名靠前,展示出较好的模拟能力;IPSL-CM6A-LR(Institut Pierre-Simon Laplace Climate Model 6A Low Resolution)在平均降水误差和极端降水的误差指标上表现出色。展开更多
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst...Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
文摘利用第六次国际耦合模式比较计划(CMIP6)中的18个模式,基于欧洲中期天气预报中心第五代再分析资料(ERA5)再分析数据对青藏高原夏季降水数据进行了偏差校正,并从平均降水和极端降水两方面评估了校正前后的CMIP6数据以及单个模式在1979-2014年的表现。研究结果表明,该校正方法高度依赖于用于偏差校正的ERA5再分析数据在研究区域的质量,尽管偏差校正后的青藏高原夏季平均降水的误差和误差率上有所改善,但在年际时间变化特征方面却不如偏差校正前的数据。大多数CMIP6模式能够较好地模拟1979-2014年青藏高原上由西北至东南逐渐递增的平均降水空间变化特征。偏差校正前的降水数据在高原上会出现显著的高估,误差率为60.4%,经过偏差校正后的数据相对观测数据误差降低,误差率为-13.9%,并且偏差校正后的数据与ERA5的平均误差仅为0.003 mm·d^(-1),与ERA5的空间相关性高达0.999。空间趋势方面,观测数据表明青藏高原大部分地区夏季降水在1979-2014年呈现轻微增加的趋势,只有东缘出现明显降低的趋势。偏差校正前后的数据都能够大致刻画出这一空间分布特征,然而,未经偏差校正的大多数单个CMIP6模式与ERA5的空间相关系数未超过0.5。与由独立观测降水数据的年际变化特征相比,偏差校正前的数据高估了高原上的降水量,而偏差校正后的数据相比观测结果则偏低。通过确定95%分位阈值选取了极端降水个例,其集合平均极端降水空间分布与年平均降水类似,也呈西北向东南递增的趋势。部分CMIP6模式较好地模拟了这一特征,如MRI-ESM2-0(The Meteorological Research Institute Earth System Model version 2.0)和ACCESSCM2(Australian Community Climate and Earth System Simulator Climate Model Version 2),与观测结果的空间相关系数分别为0.851和0.821。但偏差校正后的数据在空间相关性方面下降,由偏差校正前的0.861降为0.730,未能准确刻画高原极端降水阶梯式递增的特点。偏差校正后的极端降水数据误差分布与偏差校正前相似,偏低区域主要集中在高原南部腹地和东部。进一步的极端降水贡献率分析结果表明,观测结果与CMIP6降水数据均显示1979-2014年期间极端降水贡献率变化趋势不明显。单个CMIP6模式中,EC-Earth3-Veg(European Community Earth-Vegetation model version 3)和EC-Earth3(European Community Earth Model version 3)及CanESM5(The Canadian Earth System Model version 5)在多个统计评估指标上排名靠前,展示出较好的模拟能力;IPSL-CM6A-LR(Institut Pierre-Simon Laplace Climate Model 6A Low Resolution)在平均降水误差和极端降水的误差指标上表现出色。
基金National Major Scientific Project of China(No.2013CBA01803)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.41121001)+1 种基金National Natural Science Foundation of China(No.41271081)Foundation of One Hundred Person Project of Chinese Academy of Sciences(No.51Y251571)
文摘Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.