Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)d...Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)during air-floating transportation were studied by models tests.The results showed that with the increase of draft,the natural periods of heave motion increased,while the maximum amplitudes of oscillating motion decreased.The maximum amplitudes of heave motion decreased while pitch motion increased with the increasing of water depth;further,the period range of oscillating amplitude close to the maximum amplitude was expanded due to shallow water effect.With increasing bucket spacing,the maximum amplitudes of heave motion first increase and then decreased,whereas the maximum amplitudes of pitch motion decreased.Therefore,the favorable air-floating transportation performance can be achieved by choosing a larger bucket spacing under the condition of meeting the design requirements and reducing the draft under shallower water.展开更多
Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affec...Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52171274)the National Key Research and Development Project(Grant No.2018YFC0810402)+2 种基金Chongqing Elite Innovation and Entrepreneurship Demonstration Team(Grant No.CQYC201903204)Chongqing Special Post-Doctoral Science Foundation(Grant No.XM2019)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)(Grant No.HESS-12).
文摘Air floating transport is one of the key construction technologies of bucket foundation.The influences of draft,water depth and bucket spacing on the motion response characteristics of tetrapod bucket foundation(TBF)during air-floating transportation were studied by models tests.The results showed that with the increase of draft,the natural periods of heave motion increased,while the maximum amplitudes of oscillating motion decreased.The maximum amplitudes of heave motion decreased while pitch motion increased with the increasing of water depth;further,the period range of oscillating amplitude close to the maximum amplitude was expanded due to shallow water effect.With increasing bucket spacing,the maximum amplitudes of heave motion first increase and then decreased,whereas the maximum amplitudes of pitch motion decreased.Therefore,the favorable air-floating transportation performance can be achieved by choosing a larger bucket spacing under the condition of meeting the design requirements and reducing the draft under shallower water.
基金funded by National Natural Science Foundation of China(Grant No.51279219 and Grant No.51609027)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2016jcyj A0016)
文摘Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.