期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多光谱遥感图像的青海湖流域土壤有机质估算初探 被引量:9
1
作者 王琪 吴成永 +6 位作者 陈克龙 巴丁求英 赵爽凯 魏亚兰 刘娟 苏小艺 张肖 《土壤》 CAS CSCD 北大核心 2019年第1期160-167,共8页
土壤有机质是土壤固相部分的重要组成成分,也是陆地表层重要的碳库,其含量的快速、准确测定关乎农牧业生产活动安排与地表过程研究中关键参数的获取效率。为了探寻适合青藏高原高寒地区土壤有机质遥感反演的响应波段及遥感模型,实现区... 土壤有机质是土壤固相部分的重要组成成分,也是陆地表层重要的碳库,其含量的快速、准确测定关乎农牧业生产活动安排与地表过程研究中关键参数的获取效率。为了探寻适合青藏高原高寒地区土壤有机质遥感反演的响应波段及遥感模型,实现区域像元尺度上的土壤表层有机质估算,本文利用Landsat8-OLI多光谱遥感数据与实地采样数据对青海湖流域表层(0~20 cm)土壤进行了有机质含量反演研究。结果表明:Landsat8-OLI影像的第5、6和7波段是青海湖流域土壤有机质含量的特征波段,基于这3个波段构建的土壤有机质遥感反演三元回归模型(R^2=0.704,P<0.001),经实测点验证(RMSE=8.66)与相关文献研究结果验证(RMSE=8.85),精度高、稳定性强、预测趋势平稳。本研究不仅为高寒地区土壤有机质含量快速测定提供了一定的技术支持,也为高寒地区的碳库计算、土壤肥力评价、土壤碳循环、农作物估产、草地退化监测等提供了参考。 展开更多
关键词 青海湖流域 土壤有机质 遥感模型
下载PDF
Remotely sensed estimation and mapping of soil moisture by eliminating the effect of vegetation cover
2
作者 WU Cheng-yong CAO Guang-chao +6 位作者 CHEN Ke-long E Chong-yi MAO Ya-hui zhao shuangkai WANG Qi SU Xiao-yi WEI Ya-lan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期316-327,共12页
Soil moisture(SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region. However, remotely sensed ... Soil moisture(SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region. However, remotely sensed SM is constrained by its estimation accuracy, which mainly stems from the influence of vegetation cover on soil spectra information in mixed pixels. To overcome the low-accuracy defects of existing surface albedo method for estimating SM, in this paper, Qinghai Lake Basin, an important animal husbandry production area in Qinghai Province, China, was chosen as an empirical research area. Using the surface albedo computed from moderate resolution imaging spectroradiometer(MODIS) reflectance products and the actual measured SM data, an albedo/vegetation coverage trapezoid feature space was constructed. Bare soil albedo was extracted from the surface albedo mainly containing information of soil, vegetation, and both albedo models for estimating SM were constructed separately. The accuracy of the bare soil albedo model(root mean square error=4.20, mean absolute percent error=22.75%, and theil inequality coefficient=0.67) was higher than that of the existing surface albedo model(root mean square error=4.66, mean absolute percent error=25.46% and theil inequality coefficient=0.74). This result indicated that the bare soil albedo greatly improved the accuracy of SM estimation and mapping. As this method eliminated the effect of vegetation cover and restored the inherent soil spectra, it not only quantitatively estimates and maps SM at regional scales with high accuracy, but also provides a new way of improving the accuracy of soil organic matter estimation and mapping. 展开更多
关键词 SOIL moisture remote sensing BARE SOIL ALBEDO TRAPEZOID feature space QINGHAI Lake Basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部