Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering mul...Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials.This paper reviews the recent development of the PμSL based 3D printing technologies,together with the related applications.It introduces the working principle,the commercialized products,and the recent multiscale,multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL.This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials,optical components,4D printing,bioinspired materials and biomedical applications,and offers perspectives on the directions of the further development of PμSL based 3D printing technology.展开更多
The aim of this study was to find a way to efficiently separate neuronal cells from the cerebral cortex of adult rats,providing a reference method for rapid acquisition of neuronal cells from the adult rat brain.Fifte...The aim of this study was to find a way to efficiently separate neuronal cells from the cerebral cortex of adult rats,providing a reference method for rapid acquisition of neuronal cells from the adult rat brain.Fifteen SD rats were randomly divided into three groups,with five SD rats in each group.Then,neuron cells were isolated from the adult rat cerebral cortex by the grinding method,the trypsin method,and the collagenase II method,respectively.The expression of anti-NeuN in the neurons of each group was analyzed by flow cytometry.The acquisition rates and morphology of neurons of each group were observed by immunofluorescence staining.The grinding or collagenase II method is more suitable for rapid acquisition of neuronal cells from an adult rat’s cerebral cortex.The number of neuron cells obtained by the trypsin method were very few,so it is not convenient for later experiments.展开更多
We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development ...We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g^-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g^-1, respectively.展开更多
Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 rep...Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication.Meplazumab is a humanized anti-CD147 IgG_(2) monoclonal antibody,which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019(COVID-19)patients.Here,we conducted a randomized,double-blinded,placebo-controlled phase 1 trial to evaluate the safety,tolerability,and pharmacokinetics of meplazumab in healthy subjects,and an open-labeled,concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients.In phase 1 study,59 subjects were enrolled and assigned to eight cohorts,and no serious treatment-emergent adverse event(TEAE)or TEAE grade≥3 was observed.The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics.No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort.The biodistribution study indicated that meplazumab reached lung tissue and maintained>14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32.In the exploratory phase 2 study,17 COVID-19 patients were enrolled,and 11 hospitalized patients were involved as concurrent control.The meplazumab treatment significantly improved the discharged(P=0.005)and case severity(P=0.021),and reduced the time to virus negative(P=0.045)in comparison to the control group.These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.展开更多
基金the National Natural Science Foundation of China(51420105009).
文摘Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials.This paper reviews the recent development of the PμSL based 3D printing technologies,together with the related applications.It introduces the working principle,the commercialized products,and the recent multiscale,multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL.This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials,optical components,4D printing,bioinspired materials and biomedical applications,and offers perspectives on the directions of the further development of PμSL based 3D printing technology.
基金the National Natural Science Foundation of China(No.81960129)Qinghai basic Research Plan Project(No.2019-ZJ-922)Middle-aged and Youth Foundation of Qinghai university affiliated hospital(No.2018-QYY-13).
文摘The aim of this study was to find a way to efficiently separate neuronal cells from the cerebral cortex of adult rats,providing a reference method for rapid acquisition of neuronal cells from the adult rat brain.Fifteen SD rats were randomly divided into three groups,with five SD rats in each group.Then,neuron cells were isolated from the adult rat cerebral cortex by the grinding method,the trypsin method,and the collagenase II method,respectively.The expression of anti-NeuN in the neurons of each group was analyzed by flow cytometry.The acquisition rates and morphology of neurons of each group were observed by immunofluorescence staining.The grinding or collagenase II method is more suitable for rapid acquisition of neuronal cells from an adult rat’s cerebral cortex.The number of neuron cells obtained by the trypsin method were very few,so it is not convenient for later experiments.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 21527810, 21190041, 21521063, 11274107, 11574078 and 51702095) and the Fundamental Research Funds for the Central Universities (No. 531107040992).
文摘We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g^-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g^-1, respectively.
基金the China National Science and Technology Major Project(2019ZX09732-001).
文摘Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication.Meplazumab is a humanized anti-CD147 IgG_(2) monoclonal antibody,which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019(COVID-19)patients.Here,we conducted a randomized,double-blinded,placebo-controlled phase 1 trial to evaluate the safety,tolerability,and pharmacokinetics of meplazumab in healthy subjects,and an open-labeled,concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients.In phase 1 study,59 subjects were enrolled and assigned to eight cohorts,and no serious treatment-emergent adverse event(TEAE)or TEAE grade≥3 was observed.The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics.No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort.The biodistribution study indicated that meplazumab reached lung tissue and maintained>14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32.In the exploratory phase 2 study,17 COVID-19 patients were enrolled,and 11 hospitalized patients were involved as concurrent control.The meplazumab treatment significantly improved the discharged(P=0.005)and case severity(P=0.021),and reduced the time to virus negative(P=0.045)in comparison to the control group.These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.