On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ...On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.展开更多
青藏高原东缘巴塘断裂带内地震滑坡大量发育,部分保存有堵江证据,是该区历史构造活动的良好地质载体。以川西地区巴塘县黄草坪滑坡为研究对象,通过遥感解译、现场调查、地质时代测年、工程地质分析等方法,对滑坡发育特征和形成演化过程...青藏高原东缘巴塘断裂带内地震滑坡大量发育,部分保存有堵江证据,是该区历史构造活动的良好地质载体。以川西地区巴塘县黄草坪滑坡为研究对象,通过遥感解译、现场调查、地质时代测年、工程地质分析等方法,对滑坡发育特征和形成演化过程进行研究。结果表明:(1)黄草坪滑坡为巴塘断裂带内全新世大型岩质滑坡,发育于中—下寒武统灰岩和板岩中,体积为142.5×10^(4)~237.5×10^(4)m^(3),历史上曾堰塞巴曲,现今残留滑坡坝、湖相沉积物等滑坡堵江证据;(2)滑坡堰塞湖形成于约7.75 ka B.P.,滑坡坝在约1.07 ka B.P.之后发生溃决,堰塞湖存续时间大于6.68 ka;(3)黄草坪滑坡由降雨、冰川和冻融作用直接诱发形成的可能性较小,巴塘断裂带剧烈活动引起的强烈地震可能是直接诱因,在强震作用下坡脚处断层附近的板岩首先发生剪切破坏,上部灰岩结构面劣化并形成贯通滑面,滑体整体启动并高速下滑堵塞巴曲形成堰塞湖。该研究成果不仅可以为区内类似地震滑坡的形成机制分析提供参考,同时佐证了巴塘断裂带为全新世活动断裂带,对分析巴塘断裂带活动性与完善重建区域构造活动历史具有重要意义。展开更多
开展古滑坡堰塞湖形成演化过程研究,可以揭示古灾害地质环境效应,重建区域构造历史活动序列和古气候演变特征。特米古滑坡发育于金沙江上游巴塘段,滑坡堆积地貌和堰塞湖相沉积物保存较好,是研究区内古地质环境的良好载体。在遥感解译、...开展古滑坡堰塞湖形成演化过程研究,可以揭示古灾害地质环境效应,重建区域构造历史活动序列和古气候演变特征。特米古滑坡发育于金沙江上游巴塘段,滑坡堆积地貌和堰塞湖相沉积物保存较好,是研究区内古地质环境的良好载体。在遥感解译、无人机测绘、现场调查和地质测年的基础上,结合前人研究成果,分析探讨了特米古滑坡发育特征、堰塞湖形成时间与溃决演化过程。结果表明,特米古滑坡是特大型岩质历史堵江滑坡,滑坡堰塞湖实际形成时间应该远早于2.15 ka BP,历史上曾发生过多次溃决,完全溃决时间大约为1.08 ka BP,堰塞湖稳定保存时间大于1.07 ka。金沙江巴塘段大型堵江滑坡群并非由单次地质事件形成,而是由金沙江断裂带多次强烈地震诱发。展开更多
基金supported by the National Natural Science Foundation of China project (No. 42372339)the China Geological Survey Project (Nos. DD20221816, DD20190319)。
文摘On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.
文摘青藏高原东缘巴塘断裂带内地震滑坡大量发育,部分保存有堵江证据,是该区历史构造活动的良好地质载体。以川西地区巴塘县黄草坪滑坡为研究对象,通过遥感解译、现场调查、地质时代测年、工程地质分析等方法,对滑坡发育特征和形成演化过程进行研究。结果表明:(1)黄草坪滑坡为巴塘断裂带内全新世大型岩质滑坡,发育于中—下寒武统灰岩和板岩中,体积为142.5×10^(4)~237.5×10^(4)m^(3),历史上曾堰塞巴曲,现今残留滑坡坝、湖相沉积物等滑坡堵江证据;(2)滑坡堰塞湖形成于约7.75 ka B.P.,滑坡坝在约1.07 ka B.P.之后发生溃决,堰塞湖存续时间大于6.68 ka;(3)黄草坪滑坡由降雨、冰川和冻融作用直接诱发形成的可能性较小,巴塘断裂带剧烈活动引起的强烈地震可能是直接诱因,在强震作用下坡脚处断层附近的板岩首先发生剪切破坏,上部灰岩结构面劣化并形成贯通滑面,滑体整体启动并高速下滑堵塞巴曲形成堰塞湖。该研究成果不仅可以为区内类似地震滑坡的形成机制分析提供参考,同时佐证了巴塘断裂带为全新世活动断裂带,对分析巴塘断裂带活动性与完善重建区域构造活动历史具有重要意义。
文摘开展古滑坡堰塞湖形成演化过程研究,可以揭示古灾害地质环境效应,重建区域构造历史活动序列和古气候演变特征。特米古滑坡发育于金沙江上游巴塘段,滑坡堆积地貌和堰塞湖相沉积物保存较好,是研究区内古地质环境的良好载体。在遥感解译、无人机测绘、现场调查和地质测年的基础上,结合前人研究成果,分析探讨了特米古滑坡发育特征、堰塞湖形成时间与溃决演化过程。结果表明,特米古滑坡是特大型岩质历史堵江滑坡,滑坡堰塞湖实际形成时间应该远早于2.15 ka BP,历史上曾发生过多次溃决,完全溃决时间大约为1.08 ka BP,堰塞湖稳定保存时间大于1.07 ka。金沙江巴塘段大型堵江滑坡群并非由单次地质事件形成,而是由金沙江断裂带多次强烈地震诱发。