Sea level rise is a slow-onset disaster.We collected information about the natural and ecological environments,tides and sea levels,and socio-economic aspects to investigate the distribution and zoning of the risks fr...Sea level rise is a slow-onset disaster.We collected information about the natural and ecological environments,tides and sea levels,and socio-economic aspects to investigate the distribution and zoning of the risks from sea level rise across Shandong Province.The trends in sea level in different counties of Shandong Province were predicted using moving averages and a random dynamic analysis forecasting model,and the model outputs and socio-economic indicators were combined to assess the risks.The results show that the risks of sea level rise along the western coast of Bohai Bay and Laizhou Bay in Shandong Province were sufficiently large to warrant attention.展开更多
基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳...基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.展开更多
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(No.U1706216)the Marine Science and Technology Project of North China Sea Branch of State Oceanic Administration(No.2018B05)
文摘Sea level rise is a slow-onset disaster.We collected information about the natural and ecological environments,tides and sea levels,and socio-economic aspects to investigate the distribution and zoning of the risks from sea level rise across Shandong Province.The trends in sea level in different counties of Shandong Province were predicted using moving averages and a random dynamic analysis forecasting model,and the model outputs and socio-economic indicators were combined to assess the risks.The results show that the risks of sea level rise along the western coast of Bohai Bay and Laizhou Bay in Shandong Province were sufficiently large to warrant attention.
文摘基于密度泛函理论,对氧化铟锡(Indium Tin Oxide,ITO)表面负载单原子Y模型的表面性能进行了第一性原理计算.根据表面能计算结果可知,单原子Y最稳定负载位置为空位(H),即确定了ITO负载单原子钇(Single-atom Y supported on ITO,Y/ITO)稳定模型.对ITO和Y/ITO表面吸附气体分子(NO和CO)模型的吸附性能进行了第一性原理计算.根据对比ITO和Y/ITO表面的吸附能和态密度计算结果可知,单原子钇负载提高了ITO表面的稳定性和吸附性能.根据对比Y/ITO表面吸附NO和CO气体分子的吸附能和态密度计算结果可知,NO和CO气体分子吸附均为自发行为,过程放热.且NO气体分子更容易吸附在Y/ITO表面,即Y/ITO对NO气体分子更敏感.