Visfatin, like insulin, induces phosphorylation of signal transduction proteins that operatate downstream of the insulin receptor. The present study is focused on detecting deletion of visfatin gene and analyzing its ...Visfatin, like insulin, induces phosphorylation of signal transduction proteins that operatate downstream of the insulin receptor. The present study is focused on detecting deletion of visfatin gene and analyzing its effect on growth traits in six Chinese cattle breeds (Nangyang, Luxi, Qinchuan, Jiaxian Red, Grassland Red, and Chinese Holstein) using DNA sequencing, PCR-SSCP and PCR-RFLP methods. For the first time, a 6-bp deletion of visfatin was described and two alleles were revealed:W and D. The χ2-test analysis demonstrated that all breeds were in agreement with Hardy-Weinberg equilibrium (P〉0.05). The associations of the novel 6-bp deletion of visfatin gene with growth traits of Nanyang cattle at 6-, 12-, 18-, and 24-mon-old were analyzed. Birth weight, 12- and 24-mon-old cattle with genotype WW had greater birth weight and average daily gain than genotype WD (P〈0.01 or P〈0.05). These results suggest that the deletion may influence the birth weight and bodyweight in 12 mon-old cattle.展开更多
Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genet...Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.展开更多
基金supported by the National Natural Science Foundation of China (30972080)the Keystone Project of Transfer Gene in China (2009ZX08009-157B)the Program of National Beef Cattle Industrial Technology System of China (CARS-38)
文摘Visfatin, like insulin, induces phosphorylation of signal transduction proteins that operatate downstream of the insulin receptor. The present study is focused on detecting deletion of visfatin gene and analyzing its effect on growth traits in six Chinese cattle breeds (Nangyang, Luxi, Qinchuan, Jiaxian Red, Grassland Red, and Chinese Holstein) using DNA sequencing, PCR-SSCP and PCR-RFLP methods. For the first time, a 6-bp deletion of visfatin was described and two alleles were revealed:W and D. The χ2-test analysis demonstrated that all breeds were in agreement with Hardy-Weinberg equilibrium (P〉0.05). The associations of the novel 6-bp deletion of visfatin gene with growth traits of Nanyang cattle at 6-, 12-, 18-, and 24-mon-old were analyzed. Birth weight, 12- and 24-mon-old cattle with genotype WW had greater birth weight and average daily gain than genotype WD (P〈0.01 or P〈0.05). These results suggest that the deletion may influence the birth weight and bodyweight in 12 mon-old cattle.
基金supported by the Transgenic Programs,China(2014ZX0800930B and 2016ZX08009-001)the National Natural Science Found of China(31371703)
文摘Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.