期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple 被引量:2
1
作者 ZHANG Li-hua zhu ling-cheng +7 位作者 XU Yu LÜLong LI Xing-guo LI Wen-hui LIU Wan-da MA Feng-wang LI Ming-jun HAN De-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2080-2093,共14页
Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and... Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.However,studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.In the present study,a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.The gene structures and their promoter cis-elements,protein conserved motifs,subcellular localizations,physiological functions and biochemical properties were analyzed.A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication(WGD)and segmental duplication played vital roles in MdSPS gene family expansion.The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.Furthermore,three SPS gene subfamilies were classified based on phylogenetic relationships,and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.In addition,a major gene related to sucrose accumulation(MdSPSA2.3)was identified according to the highly consistent trends in the changes of its expression in four apple varieties(‘Golden Delicious’,‘Fuji’,‘Qinguan’and‘Honeycrisp’)and the correlation between gene expression and soluble sugar content during fruit development.Furthermore,the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development. 展开更多
关键词 APPLE sucrose phosphate synthase evolutionary pattern expression profile sugar accumulation
下载PDF
Structure and expression analysis of the sucrose synthase gene family in apple 被引量:13
2
作者 TONG Xiao-lei WANG Zheng-yang +4 位作者 MA Bai-quan ZHANG Chun-xia zhu ling-cheng MA Feng-wang LI Ming-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期847-856,共10页
Sucrose synthases(SUS) are a family of enzymes that play pivotal roles in carbon partitioning, sink strength and plant development. A total of 11 SUS genes have been identified in the genome of Malus domestica(Md SUSs... Sucrose synthases(SUS) are a family of enzymes that play pivotal roles in carbon partitioning, sink strength and plant development. A total of 11 SUS genes have been identified in the genome of Malus domestica(Md SUSs), and phylogenetic analysis revealed that the Md SUS genes were divided into three groups, named as SUS I, SUS II and SUS III, respectively. The SUS I and SUS III groups included four homologs each, whereas the SUS II group contained three homologs. SUS genes in the same group showed similar structural characteristics, such as exon number, size and length distribution. After assessing four different tissues, Md SUS1 s and Md SUS2.1 showed the highest expression in fruit, whereas Md SUS2.2/2.3 and Md SUS3 s exhibit the highest expression in shoot tips. Most Md SUSs showed decreased expression during fruit development, similar to SUS enzyme activity, but both Md SUS2.1 and Md SUS1.4 displayed opposite expression profiles. These results suggest that different Md SUS genes might play distinct roles in the sink-source sugar cycle and sugar utilization in apple sink tissues. 展开更多
关键词 APPLE sucrose synthase phylogenetic analysis gene expression enzyme activity
下载PDF
Genome-wide identification,molecular evolution, and expression divergence of the hexokinase gene family in apple 被引量:3
3
作者 zhu ling-cheng SU Jing +6 位作者 JIN Yu-ru ZHAO Hai-yan TIAN Xiao-cheng ZHANG Chen MA Fengwang LI Ming-jun MA Bai-quan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2112-2125,共14页
Hexokinase(HXK)is the first irreversible catalytic enzyme in the glycolytic pathway,which not only provides energy for plant growth and development but also serves as a signaling molecule in response to environmental ... Hexokinase(HXK)is the first irreversible catalytic enzyme in the glycolytic pathway,which not only provides energy for plant growth and development but also serves as a signaling molecule in response to environmental changes.However,the evolutionary pattern of the HXK gene family in apple remains unknown.In this study,a total of nine HXK genes were identified in the Malus×domestica genome GDDH13 v1.1.The physiological and biochemical properties,exonintron structures,conserved motifs,and cis-elements of the MdHXK genes were determined.Predicted subcellular localization indicated that the MdHXK genes were mainly distributed in the mitochondria,cytoplasm,and nucleus.Gene duplication revealed that whole-genome duplication(WGD)and segmental duplication played vital roles in MdHXK gene family expansion.Theωvalues of pairwise MdHXK genes indicated that this family was subjected to strong purifying selection during apple domestication.Additionally,five subfamilies were classified,and recent/old duplication events were identified based on phylogenetic tree analysis.Different evolutionary rates were estimated among the various HXK subfamilies.Moreover,divergent expression patterns of the MdHXK genes in four source-sink tissues and at five different apple fruit developmental stages indicated that they play vital roles in apple fruit development and sugar accumulation.Our study provides a theoretical basis for future elucidation of the biological functions of the MdHXK genes during apple fruit development. 展开更多
关键词 APPLE HEXOKINASE cis-element screening evolutionary pattern sugar accumulation
下载PDF
Response of carbohydrate metabolism-mediated sink strength to auxin in shoot tips of apple plants 被引量:1
4
作者 SU Jing CUI Wei-fang +3 位作者 zhu ling-cheng LI Bai-yun MA Feng-wang LI Ming-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期422-433,共12页
Auxin(indole-3-acetic acid, IAA) has a considerable impact on the regulation of plant carbohydrate levels and growth, but the mechanism by which it regulates sugar levels in plants has received little attention. In th... Auxin(indole-3-acetic acid, IAA) has a considerable impact on the regulation of plant carbohydrate levels and growth, but the mechanism by which it regulates sugar levels in plants has received little attention. In this study, we found that exogenous IAA altered fructose(Fru), glucose(Glc), and sucrose(Suc) concentrations in shoot tips mainly by regulating MdSUSY1, MdFRK2, MdHxK1 and MdSDH2 transcript levels. Additionally, we used 5-year-old ’Royal Gala’ apple trees to further verify that these genes play primary roles in regulating sink strength. The results showed that MdSUSY1, MdFRK2, MdHxK1/3 and MdSDH2 might be major contributors to sink strength regulation. Taken together, these results provide new insight into the regulation of the carbohydrate metabolism mechanism, which will be helpful for regulating sink strength and yield. 展开更多
关键词 APPLE exogenous IAA carbohydrate metabolism sink strength shoot tips
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部