MicroRNA(miRNA) is a class of important regulating non-coding small molecular RNA. The gma-MIR166 gene family consists of 21 members and their expression patterns diversify widely. It is important to analyze the evo...MicroRNA(miRNA) is a class of important regulating non-coding small molecular RNA. The gma-MIR166 gene family consists of 21 members and their expression patterns diversify widely. It is important to analyze the evolution of gma-MIR166 gene family in order to understand the evolutionary mechanisms of miRNAs in soybean. In this study, we implemented soybean wide genome block analysis, the molecular phylogeny of gma-MIR166 and block analysis of gma-MIR166 family. The results showed that both chromosome big segmental duplications and tandem duplications were main reasons contributed to the expanding of gmaMIR166 gene family. These findings suggested that gma-MIR166 gene family might originate from one or two ancient miRNA genes. The results of research provided a support for evolutionary study of miRNAs in soybean and related species in Fabaceae.展开更多
Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published p...Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers. After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified. To further verify the consensus QTLs, a population of chromosome segment substitution lines(CSSLs) was analyzed. Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents. Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively. Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes(Glyma.19 G146800, Glyma.19 G122500, and Glyma.19 G128500) were identified in the genetic fragments introduced from wild soybean. Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism(SNP) mutation in the coding sequence of Glyma.19 G122500, causing a nonsynonymous mutation in the amino acid sequence that affected the predicted protein structure. A Kompetitive allele-specific PCR(KASP) marker was developed based on this SNP and used to evaluate the CSSLs. These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.展开更多
Soybean is one of the most important food crops worldwide.Like other legumes,soybean can form symbiotic relationships with Rhizobium species.Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for...Soybean is one of the most important food crops worldwide.Like other legumes,soybean can form symbiotic relationships with Rhizobium species.Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.Type Ⅲ effectors(T3Es)are essential regulators of the establishment of the symbiosis,and nodule number is a feature of nitrogen-affected nodulation.However,genes encoding T3Es at quantitative trait loci(QTLs)related to nodulation have rarely been identified.Chromosome segment substitution lines(CSSLs)have a common genetic background but only a few loci with heterogeneous genetic information;thus,they are suitable materials for identifying candidate genes at a target locus.In this study,a CSSL population was used to identify the QTLs related to nodule number in soybean.Single nucleotide polymorphism(SNP)markers and candidate genes within the QTLs interval were detected,and it was determined which genes showed differential expression between isolines.Four candidate genes(GmCDPK28,GmNAC1,GmbHLH,and GmERF5)linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.A candidate gene(GmERF5)encoding a transcription factor that may interact directly with the T3E NopAA was identified.The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment.展开更多
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the di...Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.展开更多
结核病(tuberculosis,TB)流行病快速筛查常采用结核菌素纯蛋白衍生物(pure protein derivative,PPD)皮试,但特异性低,不良反应大。ESAT-6和CFP-10是结核分枝杆菌的分泌蛋白,但卡介苗(Bacillus Calmette-Guerin,BCG)中缺失了相关基因。...结核病(tuberculosis,TB)流行病快速筛查常采用结核菌素纯蛋白衍生物(pure protein derivative,PPD)皮试,但特异性低,不良反应大。ESAT-6和CFP-10是结核分枝杆菌的分泌蛋白,但卡介苗(Bacillus Calmette-Guerin,BCG)中缺失了相关基因。本研究表达纯化了结核分枝杆菌的分泌蛋白ESAT6和CFP10的融合蛋白(ESAT6 and CFP10 fusion protein,EC),并制备成其壳聚糖纳米粒(ESAT6 and CFP10 fusion protein nanoparticals,EC-NPs),进一步制备成透明质酸可溶性微针贴片(microneedle patch,MNP)。MNP-EC-NPs载药量达到每针0.03μg,每片可达到1.92μg,常温下保存期可达6个月,可有效透过表皮。志愿者皮试结果显示MNP-EC-NPs可有效区分BCG接种者,在结核病患者皮肤有效显示阳性反应,无显著不良反应,实验经武汉市肺科医院伦理委员会批准[武肺伦理2022(2)]。本研究建立了一种结核病皮试方法,采用ESAT6-CFP10融合蛋白替代PPD,并采用可溶性微针剂型,提高了结核病皮试诊断的特异性,为结核流行病筛查提供了新的技术方案。展开更多
基金Supported by Heilongjiang Postdoctoral Fund(LBH-Z12045)Northeast Agricultural University Innovation Foundation For Postgraduate(yjscx14053)
文摘MicroRNA(miRNA) is a class of important regulating non-coding small molecular RNA. The gma-MIR166 gene family consists of 21 members and their expression patterns diversify widely. It is important to analyze the evolution of gma-MIR166 gene family in order to understand the evolutionary mechanisms of miRNAs in soybean. In this study, we implemented soybean wide genome block analysis, the molecular phylogeny of gma-MIR166 and block analysis of gma-MIR166 family. The results showed that both chromosome big segmental duplications and tandem duplications were main reasons contributed to the expanding of gmaMIR166 gene family. These findings suggested that gma-MIR166 gene family might originate from one or two ancient miRNA genes. The results of research provided a support for evolutionary study of miRNAs in soybean and related species in Fabaceae.
基金financially supported by the National Natural Science Foundation of China(31701449,31971968,31971899,and 31501332)the Natural Science Foundation of Heilongjiang,China(QC2017013)+7 种基金the National Key R&D Program of China(2016YFD0100500,2016YFD0100300 and 2016YFD0100201-21)the Special Financial Aid to PostDoctor Research Fellow in Heilongjiang,China(LBHTZ1714)the International Postdoctoral Exchange Fellowship Program of China Postdoctoral Council(20180004)the China Post Doctoral Project,China(2015M581419)the Post-Doctoral Project of Northeast Agricultural University,China(NEAUBH-19002)the Heilongjiang Funds for Distinguished Young Scientists,China(JC2016004 and JC2017006)the Dongnongxuezhe Project,China(to Chen Qingshan)the the Backbone of Young Talent Scholar Project(to Qi Zhaoming,18XG01)of Northeast Agricultural University,China。
文摘Soluble sugar content in seeds is an important quality trait of soybean. In this study, 57 quantitative trait loci(QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers. After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified. To further verify the consensus QTLs, a population of chromosome segment substitution lines(CSSLs) was analyzed. Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents. Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively. Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes(Glyma.19 G146800, Glyma.19 G122500, and Glyma.19 G128500) were identified in the genetic fragments introduced from wild soybean. Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism(SNP) mutation in the coding sequence of Glyma.19 G122500, causing a nonsynonymous mutation in the amino acid sequence that affected the predicted protein structure. A Kompetitive allele-specific PCR(KASP) marker was developed based on this SNP and used to evaluate the CSSLs. These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.
基金received from the National Natural Science Foundation of China(32070274,32072014 and 31971899)the China Postdoctoral Science Foundation(2020M681072)+4 种基金the Natural Science Foundation for the Excellent Youth Scholars of Heilongjiang Province,China(YQ2019C008)the Europe Horizon 2020(EUCLEG and 727312)the Youth Science and Technology Innovation Leader,China(2018RA2172)the National Key Research&Development Program of China(2016YFD0100500,2016YFD0100300 and 2016YFD0100201)the Heilongjiang Postdoctoral Science Foundation,China(LBH-Q16014)。
文摘Soybean is one of the most important food crops worldwide.Like other legumes,soybean can form symbiotic relationships with Rhizobium species.Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.Type Ⅲ effectors(T3Es)are essential regulators of the establishment of the symbiosis,and nodule number is a feature of nitrogen-affected nodulation.However,genes encoding T3Es at quantitative trait loci(QTLs)related to nodulation have rarely been identified.Chromosome segment substitution lines(CSSLs)have a common genetic background but only a few loci with heterogeneous genetic information;thus,they are suitable materials for identifying candidate genes at a target locus.In this study,a CSSL population was used to identify the QTLs related to nodule number in soybean.Single nucleotide polymorphism(SNP)markers and candidate genes within the QTLs interval were detected,and it was determined which genes showed differential expression between isolines.Four candidate genes(GmCDPK28,GmNAC1,GmbHLH,and GmERF5)linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.A candidate gene(GmERF5)encoding a transcription factor that may interact directly with the T3E NopAA was identified.The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment.
基金financially supported by the Academic Skeleton Support Plan of Department of Education of Heilongjiang Province,China (1254G011)the National Natural Science Foundation of China (31271747,31471516,31400074,31401465,31501332)+3 种基金the National High-Tech R&D Program of China (the 863 Program,2013AA102602)the Research Fund for the Doctoral Program of Higher Education of China (20122325120015)the Academic Backbone Project of Northeast Agricultural University,China (15XG02)the Talented Young Project of Northeast Agricultural University,China (518062)
文摘Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.
文摘结核病(tuberculosis,TB)流行病快速筛查常采用结核菌素纯蛋白衍生物(pure protein derivative,PPD)皮试,但特异性低,不良反应大。ESAT-6和CFP-10是结核分枝杆菌的分泌蛋白,但卡介苗(Bacillus Calmette-Guerin,BCG)中缺失了相关基因。本研究表达纯化了结核分枝杆菌的分泌蛋白ESAT6和CFP10的融合蛋白(ESAT6 and CFP10 fusion protein,EC),并制备成其壳聚糖纳米粒(ESAT6 and CFP10 fusion protein nanoparticals,EC-NPs),进一步制备成透明质酸可溶性微针贴片(microneedle patch,MNP)。MNP-EC-NPs载药量达到每针0.03μg,每片可达到1.92μg,常温下保存期可达6个月,可有效透过表皮。志愿者皮试结果显示MNP-EC-NPs可有效区分BCG接种者,在结核病患者皮肤有效显示阳性反应,无显著不良反应,实验经武汉市肺科医院伦理委员会批准[武肺伦理2022(2)]。本研究建立了一种结核病皮试方法,采用ESAT6-CFP10融合蛋白替代PPD,并采用可溶性微针剂型,提高了结核病皮试诊断的特异性,为结核流行病筛查提供了新的技术方案。