目的:探讨传统有氧康复运动对轻度认知障碍老年人认知功能的影响。方法:检索PubMed、Embase、Cochrane library临床试验数据库、Web of science、中国生物医学文献数据库、中国知网、万方、维普数据库,收集传统有氧康复运动对轻度认知...目的:探讨传统有氧康复运动对轻度认知障碍老年人认知功能的影响。方法:检索PubMed、Embase、Cochrane library临床试验数据库、Web of science、中国生物医学文献数据库、中国知网、万方、维普数据库,收集传统有氧康复运动对轻度认知障碍老年人认知功能影响的随机对照试验。利用RevMan5.3软件进行统计处理。结果:纳入文献10篇,传统有氧康复运动能够提高轻度认知障碍老年人认知功能[SMD=0.36,95%CI(0.25,0.48),P<0.000,01];亚组分析结果显示,与对照组比较,运动周期≥3个月[SMD=0.38,95%CI(0.26,0.50),P<0.000,01]、每周运动≤3次[SMD=0.38,95%CI(0.24,0.52),P<0.000,01]、每天运动时间≤40 min[SMD=0.26,95%CI(0.12,0.40),P=0.000,2],可改善轻度认知障碍老年人认知功能(P<0.05)。结论:传统有氧康复运动可提高轻度认知障碍老年人认知功能,建议运动周期至少3个月,每周运动3次,且每天运动40 min。展开更多
为了实现裂隙介质中的地震AVO(amplitude variation with offset)反演,基于Christoffel方程和边界条件,推导了EDA介质中PP波、PS1波、PS2波精确反射系数表达式,并采用扰动法推导了极端弱各向异性介质中PP波的近似反射系数,通过弹性系数...为了实现裂隙介质中的地震AVO(amplitude variation with offset)反演,基于Christoffel方程和边界条件,推导了EDA介质中PP波、PS1波、PS2波精确反射系数表达式,并采用扰动法推导了极端弱各向异性介质中PP波的近似反射系数,通过弹性系数简化得到HTI、裂隙EDA介质中PP波的近似反射系数。模型计算结果表明:在弱各向异性条件下,HTI(horizontal transverse isotropy)介质中地震波的近似反射系数公式计算精度较高,相对误差在4%以内;当裂隙介质在弱各向异性(各向异性系数<0.1)的情况下,当入射角在40°以内时,PP波近似反射系数与精确反射系数的绝对误差在10^(-4)以内,相对误差小于4%,但随着入射角的加大其计算误差有所增加。对各向异性较强烈(各向异性系数达到0.2)的裂隙介质,当入射角相对较小时(小于45°时),裂隙介质中PP波近似反射系数计算式对于强各向异性的介质仍然成立。通过对反射系数的近似研究,可以将裂隙介质中反射系数的非线性问题转为线性问题,进而利用这些特性进行参数反演,有利于提高反演速度。展开更多
Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon...Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (AlN), which has a thermal conductivity that is about 200 times higher than that of SiO2 (320 W·m ? 1·K? 1 versus 1.4 W·m? 1·K? 1). To investigate the self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electri-cal characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the appli-cations of SOI to high temperature conditions.展开更多
To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; ...To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.展开更多
基金Supported by the Special Funds for Major State Basic Research Projects (No.G2000036506)the National Natural Science Foundation of China (No. 60476006)
文摘Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advan-tages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal – oxide – silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (AlN), which has a thermal conductivity that is about 200 times higher than that of SiO2 (320 W·m ? 1·K? 1 versus 1.4 W·m? 1·K? 1). To investigate the self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electri-cal characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the appli-cations of SOI to high temperature conditions.
基金Supported by the National Natural Science Foundation of China (50099620, 40804027)
文摘To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.