期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CapsNet-FR: Capsule Networks for Improved Recognition of Facial Features
1
作者 Mahmood Ul Haq Muhammad Athar Javed Sethi +3 位作者 Najib Ben Aoun Ala Saleh Alluhaidan Sadique Ahmad zahid farid 《Computers, Materials & Continua》 SCIE EI 2024年第5期2169-2186,共18页
Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional ... Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security,authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neuralnetworks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since theydo not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networksas a more robust design capable of retaining pose information and spatial correlations to recognize objects morelike the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, andso on, which are routed to higher-level capsules via a new routing by agreement algorithm. This provides capsulenetworks with viewpoint invariance, which has previously evaded CNNs. This research presents a FR model basedon capsule networks that was tested using the LFW dataset, COMSATS face dataset, and own acquired photos usingcameras measuring 128 × 128 pixels, 40 × 40 pixels, and 30 × 30 pixels. The trained model outperforms state-ofthe-art algorithms, achieving 95.82% test accuracy and performing well on unseen faces that have been blurred orrotated. Additionally, the suggested model outperformed the recently released approaches on the COMSATS facedataset, achieving a high accuracy of 92.47%. Based on the results of this research as well as previous results, capsulenetworks perform better than deeper CNNs on unobserved altered data because of their special equivarianceproperties. 展开更多
关键词 CapsNet face recognition artificial intelligence
下载PDF
An Improved Hybrid Indoor Positioning Algorithm via QPSO and MLP Signal Weighting 被引量:1
2
作者 Edgar Scavino Mohd Amiruddin Abd Rahman zahid farid 《Computers, Materials & Continua》 SCIE EI 2023年第1期379-397,共19页
Accurate location or positioning of people and self-driven devices in large indoor environments has become an important necessity The application of increasingly automated self-operating moving transportation units,in... Accurate location or positioning of people and self-driven devices in large indoor environments has become an important necessity The application of increasingly automated self-operating moving transportation units,in large indoor spaces demands a precise knowledge of their positions.Technologies like WiFi and Bluetooth,despite their low-cost and availability,are sensitive to signal noise and fading effects.For these reasons,a hybrid approach,which uses two different signal sources,has proven to be more resilient and accurate for the positioning determination in indoor environments.Hence,this paper proposes an improved hybrid technique to implement a fingerprinting based indoor positioning,using Received Signal Strength information from available Wireless Local Area Network access points,together with the Wireless Sensor Networks technology.Six signals were recorded on a regular grid of anchor points,covering the research space.An optimization was performed by relative signal weighting,to minimize the average positioning error over the research space.The optimization process was conducted using a standard Quantum Particle Swarm Optimization,while the position error estimate for all given sets of weighted signals was performed using aMultilayer Perceptron(MLP)neural network.Compared to our previous research works,the MLP architecture was improved to three hidden layers and its learning parameters were finely tuned.These experimental results led to the 20%reduction of the positioning error when a suitable set of signal weights was calculated in the optimization process.Our final achieved value of 0.725 m of the location incertitude shows a sensible improvement compared to our previous results. 展开更多
关键词 QPSO indoor localization fingerprinting neural networks WIFI WSN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部