期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving Smart Home Security via MQTT: Maximizing Data Privacy and Device Authentication Using Elliptic Curve Cryptography
1
作者 zainatul yushaniza mohamed yusoff Mohamad Khairi Ishak +1 位作者 Lukman A.B.Rahim Mohd Shahrimie Mohd Asaari 《Computer Systems Science & Engineering》 2024年第6期1669-1697,共29页
The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Tel... The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats. 展开更多
关键词 Smart home CONFIDENTIALITY ECC SECURITY lightweight cryptography AUTHENTICATION integrity efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部