This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s...This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,51974183,and 51974184)Science and Technology Major Project of Yunnan Province(No.202302AB080020)Natural Science Foundation of Shanghai(No.22ZR1425000)。
文摘This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods.