With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor...With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin...Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.展开更多
Aqueous zinc ion batteries(AZIBs)are promising energy storage devices.However,the formation of dendrites,hydrogen evolution,and corrosion reaction seriously affect their electrochemical performance.Herein,the synergis...Aqueous zinc ion batteries(AZIBs)are promising energy storage devices.However,the formation of dendrites,hydrogen evolution,and corrosion reaction seriously affect their electrochemical performance.Herein,the synergistic effect of ion-migration regulation and interfacial engineering has been confirmed as the potential strategy by kaolin functionalized glass fiber separator(KL-GF)to alleviate these problems.The rapid and orderly Zn^(2+)migration was achieved to improve the transfer kinetics and induced uniform zinc deposition by more zinc-philic sites of KL-GF.Based on the interfacial engineering,the side reactions were effectively mitigated and crystal planes were regulated through KL-GF.The hydrophilicity of KL alleviated the corrosion and hydrogen evolution.Importantly,a preferential orientation of Zn(002)crystal plane by KL-GF was induced to further realize dendrite-free deposition by density functional theory(DFT)and X-ray diffraction(XRD)characterization.Hence,the Zn|KL-GF|MnO_(2)cell maintained a high discharge capacity of 96.8 mAh/g at 2 A/g after 1000 cycles.This work can provide guidance enabling high-performance zinc anode for AZIBs.展开更多
Objective:To study the chemical constituents of the roots of Angelica dahurica,a well-known Chinese herbal medicine named Baizhi in Chinese.Methods:Compounds were separated by various chromatographies,and the structur...Objective:To study the chemical constituents of the roots of Angelica dahurica,a well-known Chinese herbal medicine named Baizhi in Chinese.Methods:Compounds were separated by various chromatographies,and the structures of new compounds were elucidated based on the analysis of their spectroscopic and spectrometric data(1D,2D NMR,HRESI MS,IR,and UV).The absolute configurations of new compounds were determined by the calculated electronic circular dichroism and chemical derivatization.The inhibitory activities of all isolates against nitric oxide(NO)production were evaluated using lipopolysaccharide-activated RAW 264.7macrophage cells.Results:Seven new 3,4-dihydro-furanocoumarin derivatives(1a/1b,2a/2b,3a/3b,4)together with a known furanocoumarin(5)were isolated from the roots of A.dahurica.The new compounds included three pairs of enantiomers,(4S,2’’R)-angelicadin A(1a)/(4R,2’’S)-angelicadin A(1b),(4S,2’’S)-angelicadin A(2a)/(4R,2’’R)-angelicadin A(2b),and(4S,2’’S)-secoangelicadin A(3a)/(4R,2’’R)-secoangelicadin A(3b),together with(4R,2’’R)-secoangelicadin A methyl ester(4).The known xanthotoxol(5)inhibited the NO production with the half-maximal inhibitory concentration(IC50)value of(32.8±0.8)μmol/L,but all the new compounds showed no inhibitory activities at the concentration of100μmol/L.Conclusion:This is the first report of the discovery of 3,4-dihydro-furanocoumarins from A.dahurica.The results are not only meaningful for the understanding of the chemical constituents of A.dahurica,but also enrich the reservoir of natural products.展开更多
Circular RNAs(circRNAs)are endogenous non-coding RNAs with covalently closed structures,which have important functions in plants.However,their biogenesis,degradation,and function upon treatment with gibberellins(GAs)a...Circular RNAs(circRNAs)are endogenous non-coding RNAs with covalently closed structures,which have important functions in plants.However,their biogenesis,degradation,and function upon treatment with gibberellins(GAs)and auxins(1-naphthaleneacetic acid,NAA)remain unknown.Here,we systematically identified and characterized the expression patterns,evolutionary conservation,genomic features,and internal structures of circRNAs using RNase R-treated libraries from moso bamboo(Phyllostachys edulis)seedlings.Moreover,we investigated the biogenesis of circRNAs dependent on both cis-and trans-regulation.We explored the function of circRNAs,including their roles in regulating microRNA(miRNA)-related genes and modulating the alternative splicing of their linear counterparts.Importantly,we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs.Finally,we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA.Collectively,our study provides insights into the biogenesis,function,and miRNA-mediated degradation of circRNAs in moso bamboo.展开更多
Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance o...Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance of elemental sulfur, but the application of Li-S batteries is impeded by a series of problems. Recently, all-solid-state Li-S batteries(ASSLSBs) have drawn great attention because many drawbacks such as safety issues caused by metallic lithium anodes and organic liquid electrolytes can be overcome through the use of solid-state electrolytes(SEs). However, not only the problems brought by sulfur cathodes still exist, but more trouble arouses from the interfaces between SEs and cathodes, hampering the practical application of ASSLSBs. Therefore, in order to deal with the problems, enormous endeavors have been done on ASSLSB cathodes during the past few decades, including engineering of cathode active materials, cathode host materials, cathode binder materials and cathode structures. In this review, the electrochemical mechanism and existing problems of ASSLSBs are briefly introduced. Subsequently, the strategies for developing cathode materials and designing cathode structures are presented. Then there follows a brief discussion of SE problems and expectations, and finally, the challenges and perspectives of ASSLSBs are summarized.展开更多
Anodic oxidation electrodeposition is the primary way to prepare lead dioxide anode. The regulation of the external circuit for the reaction is a unique advantage of electrocatalytic reaction, which can regulate cryst...Anodic oxidation electrodeposition is the primary way to prepare lead dioxide anode. The regulation of the external circuit for the reaction is a unique advantage of electrocatalytic reaction, which can regulate crystallization and accelerate the reaction process. In this study, lead dioxide coatings with uniform pore size distribution were quickly prepared on three different substrates by potential linear increase electrodeposition(PLIED). Morphology and structure analysis shows that the prepared electrodes have uniform porous morphology, and Ti/SnO_(2)/PLIED has the smallest grain size. Three electrodes all display well degradation performance to azophloxine and diclofenac sodium. Ti/PLIED, and Ti/SnO_(2)/PLIED are appreciated for degrading organics with a simple structure in low concentrations. At the same time,Ti/SnO_(2)/PLIED is more suitable for complex organics in high concentrations. Electrochemical activity tests indicate the different mechanisms of the PLIED electrodes that build the other degradation performance.Three PLIED electrodes show excellent electrical and electrochemical stability during the cycle degradation process. The results provide a reference for the subsequent anodic oxidation electrodeposition research and the regulating effect of the external circuit on coating properties.展开更多
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,22304055)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+4 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151,E2022209158,B2022209026,D2023209012)the Central Guiding Local Science and Technology Development Fund Project(236Z4409G)the Science and Technology Project of Hebei Education Department(SLRC2019028)the Science and Technology Planning Project of Tangshan City(22130227H)。
文摘With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金financially supported by the National Natural Science Foundation of China (Nos.51872090 and51772097)the Hebei Natural Science Fund for Distinguished Young Scholar,China (No.E2019209433)+2 种基金the Youth Talent Program of Hebei Provincial Education Department,China (No.BJ2018020)the Natural Science Foundation of Hebei Province,China (No.E2020209151)the Science and Technology Project of Hebei Education Department,China (No.SLRC2019028)。
文摘Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.
基金supported by the National Natural Science Foundation of China(Nos.51872090,51772097,82204604)the Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+1 种基金the Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)the Natural Science Foundation of Hebei Province(Nos.E2020209151,E2022209158,H2022209012)。
文摘Aqueous zinc ion batteries(AZIBs)are promising energy storage devices.However,the formation of dendrites,hydrogen evolution,and corrosion reaction seriously affect their electrochemical performance.Herein,the synergistic effect of ion-migration regulation and interfacial engineering has been confirmed as the potential strategy by kaolin functionalized glass fiber separator(KL-GF)to alleviate these problems.The rapid and orderly Zn^(2+)migration was achieved to improve the transfer kinetics and induced uniform zinc deposition by more zinc-philic sites of KL-GF.Based on the interfacial engineering,the side reactions were effectively mitigated and crystal planes were regulated through KL-GF.The hydrophilicity of KL alleviated the corrosion and hydrogen evolution.Importantly,a preferential orientation of Zn(002)crystal plane by KL-GF was induced to further realize dendrite-free deposition by density functional theory(DFT)and X-ray diffraction(XRD)characterization.Hence,the Zn|KL-GF|MnO_(2)cell maintained a high discharge capacity of 96.8 mAh/g at 2 A/g after 1000 cycles.This work can provide guidance enabling high-performance zinc anode for AZIBs.
基金financially supported by Beijing Natural Science Foundation(No.7202125)。
文摘Objective:To study the chemical constituents of the roots of Angelica dahurica,a well-known Chinese herbal medicine named Baizhi in Chinese.Methods:Compounds were separated by various chromatographies,and the structures of new compounds were elucidated based on the analysis of their spectroscopic and spectrometric data(1D,2D NMR,HRESI MS,IR,and UV).The absolute configurations of new compounds were determined by the calculated electronic circular dichroism and chemical derivatization.The inhibitory activities of all isolates against nitric oxide(NO)production were evaluated using lipopolysaccharide-activated RAW 264.7macrophage cells.Results:Seven new 3,4-dihydro-furanocoumarin derivatives(1a/1b,2a/2b,3a/3b,4)together with a known furanocoumarin(5)were isolated from the roots of A.dahurica.The new compounds included three pairs of enantiomers,(4S,2’’R)-angelicadin A(1a)/(4R,2’’S)-angelicadin A(1b),(4S,2’’S)-angelicadin A(2a)/(4R,2’’R)-angelicadin A(2b),and(4S,2’’S)-secoangelicadin A(3a)/(4R,2’’R)-secoangelicadin A(3b),together with(4R,2’’R)-secoangelicadin A methyl ester(4).The known xanthotoxol(5)inhibited the NO production with the half-maximal inhibitory concentration(IC50)value of(32.8±0.8)μmol/L,but all the new compounds showed no inhibitory activities at the concentration of100μmol/L.Conclusion:This is the first report of the discovery of 3,4-dihydro-furanocoumarins from A.dahurica.The results are not only meaningful for the understanding of the chemical constituents of A.dahurica,but also enrich the reservoir of natural products.
基金supported by the National Natural Science Foundation of China(Grant Nos.31971734 and 31800566)the National Key R&D Program of China(Grant No.2021YFD2200505)+2 种基金the Distinguished Young Scholar Program of Fujian Agriculture and Forestry University(Grant No.xjq202017)the Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University(Grant No.324-1122yb061)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(Grant No.72202200205),China。
文摘Circular RNAs(circRNAs)are endogenous non-coding RNAs with covalently closed structures,which have important functions in plants.However,their biogenesis,degradation,and function upon treatment with gibberellins(GAs)and auxins(1-naphthaleneacetic acid,NAA)remain unknown.Here,we systematically identified and characterized the expression patterns,evolutionary conservation,genomic features,and internal structures of circRNAs using RNase R-treated libraries from moso bamboo(Phyllostachys edulis)seedlings.Moreover,we investigated the biogenesis of circRNAs dependent on both cis-and trans-regulation.We explored the function of circRNAs,including their roles in regulating microRNA(miRNA)-related genes and modulating the alternative splicing of their linear counterparts.Importantly,we developed a customized degradome sequencing approach to detect miRNA-mediated cleavage of circRNAs.Finally,we presented a comprehensive view of the participation of circRNAs in the regulation of hormone metabolism upon treatment of bamboo seedlings with GA and NAA.Collectively,our study provides insights into the biogenesis,function,and miRNA-mediated degradation of circRNAs in moso bamboo.
基金supported by the National Natural Science Foundation of China (Nos. 51874110 and 51604089)Natural Science Foundation of Heilongjiang Province (No. LH2021B011)Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QA202138)。
文摘Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance of elemental sulfur, but the application of Li-S batteries is impeded by a series of problems. Recently, all-solid-state Li-S batteries(ASSLSBs) have drawn great attention because many drawbacks such as safety issues caused by metallic lithium anodes and organic liquid electrolytes can be overcome through the use of solid-state electrolytes(SEs). However, not only the problems brought by sulfur cathodes still exist, but more trouble arouses from the interfaces between SEs and cathodes, hampering the practical application of ASSLSBs. Therefore, in order to deal with the problems, enormous endeavors have been done on ASSLSB cathodes during the past few decades, including engineering of cathode active materials, cathode host materials, cathode binder materials and cathode structures. In this review, the electrochemical mechanism and existing problems of ASSLSBs are briefly introduced. Subsequently, the strategies for developing cathode materials and designing cathode structures are presented. Then there follows a brief discussion of SE problems and expectations, and finally, the challenges and perspectives of ASSLSBs are summarized.
基金the financial supports from the National Natural Science Foundation of China (No. 52270078)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2021JM-012)+1 种基金the Welfare Technology Research Plan of Zhejiang Province (No. LZY21E080003)the Fundamental Research Funds for the Central Universities (No. xjh012020037)。
文摘Anodic oxidation electrodeposition is the primary way to prepare lead dioxide anode. The regulation of the external circuit for the reaction is a unique advantage of electrocatalytic reaction, which can regulate crystallization and accelerate the reaction process. In this study, lead dioxide coatings with uniform pore size distribution were quickly prepared on three different substrates by potential linear increase electrodeposition(PLIED). Morphology and structure analysis shows that the prepared electrodes have uniform porous morphology, and Ti/SnO_(2)/PLIED has the smallest grain size. Three electrodes all display well degradation performance to azophloxine and diclofenac sodium. Ti/PLIED, and Ti/SnO_(2)/PLIED are appreciated for degrading organics with a simple structure in low concentrations. At the same time,Ti/SnO_(2)/PLIED is more suitable for complex organics in high concentrations. Electrochemical activity tests indicate the different mechanisms of the PLIED electrodes that build the other degradation performance.Three PLIED electrodes show excellent electrical and electrochemical stability during the cycle degradation process. The results provide a reference for the subsequent anodic oxidation electrodeposition research and the regulating effect of the external circuit on coating properties.