Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b...Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.展开更多
The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such ...The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm.展开更多
Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight d...Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight distribution for operational evaluation was developed, and multiple-forecaster synchronous forecasting was realized while avoiding the instability cased by only one forecaster. Weights were distributed to the forecasters according to each one's forecast precision. An evaluation criterion for the professional level of the forecasters was also built. The eligibility rates of forecast results demonstrate the skill of the forecasters and the stability of their forecasts. With the developed tide forecasting method, the precision and reasonableness of tide forecasting are improved. The application of the present method to tide forecasting at the Huangpu Park tidal station demonstrates the validity of the method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52109010)the Postdoctoral Science Foundation of China(Grant No.2021M701047)the China National Postdoctoral Program for Innovative Talents(Grant No.BX20200113).
文摘Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2006CB403402)
文摘The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm.
文摘Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight distribution for operational evaluation was developed, and multiple-forecaster synchronous forecasting was realized while avoiding the instability cased by only one forecaster. Weights were distributed to the forecasters according to each one's forecast precision. An evaluation criterion for the professional level of the forecasters was also built. The eligibility rates of forecast results demonstrate the skill of the forecasters and the stability of their forecasts. With the developed tide forecasting method, the precision and reasonableness of tide forecasting are improved. The application of the present method to tide forecasting at the Huangpu Park tidal station demonstrates the validity of the method.