Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiat...Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.展开更多
To identify the chemical differences which lead to the different therapeutic effects of dried rehmannia root(DRR)and prepared rehmannia root(PRR),we compared the chemical composition of decoctions of randomly purchase...To identify the chemical differences which lead to the different therapeutic effects of dried rehmannia root(DRR)and prepared rehmannia root(PRR),we compared the chemical composition of decoctions of randomly purchased DRR and PRR using ultra performance liquid chromatography(UPLC)coupled with time-of-fight mass spectrometry and high performance liquid chromatography(HPLC)coupled with evaporative light scattering detection(ELSD)with the aid of multivariate statistical analysis.Both approaches clearly revealed compositional and quantitative differences between DRR and PRR.UPLC-MS data indicated stachyose,rehmaiono-side A(or rehmaionoside B),acteoside(or forsythiaside,or isoacteoside),6-O-coumaroylajugol(or 6-O-E-feruloylajugol,or 6-O-Z-feruloylajugol)as important discriminators between DRR and PRR decoctions.HPLC-ELSD analysis showed that the content of fructose in the decoctions of PRR was about four times greater than that of DRR(P<10^(-5)),while sucrose content in the decoctions of PRR was only about one seventh of that in DRR(P<0.01).Our results suggest that some compounds,such as fructose,stachyose and rehmaionoside,may be responsible for the differing therapeutic effects of DRR and PRR.Furthermore,improvements in quality control for PRR,which is currently lacking in the Chinese Pharmacopoeia,are recommended.展开更多
基金funded by the National Key Research and Development Program(2022YFC3500303)Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202009)National Natural Science Foundation of China(81873063).
文摘Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.
基金The authors are grateful for financial support from the National Nature Science Foundation of China(Grant Nos.81073161,81130067 and 30730112)the National Basic Research Program of China(Grant No.2011CB505304)+1 种基金the Natural Science Foundation of Beijing(Grant No.7112110)for technical support from Mr.Yong Wang and other technologists of Waters China Ltd.
文摘To identify the chemical differences which lead to the different therapeutic effects of dried rehmannia root(DRR)and prepared rehmannia root(PRR),we compared the chemical composition of decoctions of randomly purchased DRR and PRR using ultra performance liquid chromatography(UPLC)coupled with time-of-fight mass spectrometry and high performance liquid chromatography(HPLC)coupled with evaporative light scattering detection(ELSD)with the aid of multivariate statistical analysis.Both approaches clearly revealed compositional and quantitative differences between DRR and PRR.UPLC-MS data indicated stachyose,rehmaiono-side A(or rehmaionoside B),acteoside(or forsythiaside,or isoacteoside),6-O-coumaroylajugol(or 6-O-E-feruloylajugol,or 6-O-Z-feruloylajugol)as important discriminators between DRR and PRR decoctions.HPLC-ELSD analysis showed that the content of fructose in the decoctions of PRR was about four times greater than that of DRR(P<10^(-5)),while sucrose content in the decoctions of PRR was only about one seventh of that in DRR(P<0.01).Our results suggest that some compounds,such as fructose,stachyose and rehmaionoside,may be responsible for the differing therapeutic effects of DRR and PRR.Furthermore,improvements in quality control for PRR,which is currently lacking in the Chinese Pharmacopoeia,are recommended.