Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Eleph...Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.展开更多
The surface wrinkling of biological tissues is ubiquitous in nature.Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies.Controlled wrinkling has bee...The surface wrinkling of biological tissues is ubiquitous in nature.Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies.Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns,on either planar or curved surfaces.The surface wrinkling on planar substrates has been investigated thoroughly during the past decades.However,most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak.The study of wrinkling on curved substrates is critical for understanding the biological growth,developing threedimensional(3D)or four-dimensional(4D)fabrication techniques,and creating novel topographic patterns.In this review,fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized.The mechanics behind the wrinkles is compared between the planar and the curved cases.Beyond the film thickness,modulus ratio,and mismatch strain,the substrate curvature is one more significant parameter controlling the surface wrinkling.Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales.Up to date,the wrinkling morphologies on solid/hollow core-shell spheres and cylinders have been simulated and selectively produced.Emerging applications of the curved topographic patterns have been found in smart wetting surfaces,cell culture interfaces,healthcare materials,and actuators,which may accelerate the development of artificial organs,stimuli-responsive devices,and micro/nano fabrications with higher dimensions.展开更多
A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond an...A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond angle” of 90° for every 3 continuous nucleons to make the nucleons packed densely. Extra N(‘s) can bind to ring-P with the same “bond angle” and “bond distance”. When 2 or more P’s are geometrically available, the extra N tends to be stable. Extra P can bind with ring N in a similar way when the ratio of N/P < 1 although the binding is weaker than that of extra N. Even-Z rings, as well as normal even-even nuclei, always have superimposed gravity centers of P and N;while for odd-Z rings, as well as all odd-A (A: number of nucleon) nuclei, the centers of P and N must be eccentric. The eccentricity results in a depression of binding energy (EB) and therefore odd and even Z dependent zigzag features of EB/A. This can be well explained by the shift of eccentricity by extra nucleons. Symmetrical center may present in even-Z rings and normal even-even nuclei. While for odd-Z ring, only antisymmetric center (every P can find an N through the center and vice versa) is possible. Based on this model, a pair of mirror nuclei, PX+nNX and PXNX+n, should be equivalent in packing structure just like black-white photo and the negative film. Therefore, an identical spin and parity was confirmed for any pair. In addition, the EB/A difference of mirror nuclei pair is nearly a constant of 0.184n MeV. Many other facts can also be easily understood from this model, such as the neutron halo, the unusual stability sequence of 9Be, 7Be and 8Be and so on.展开更多
The defect engineering in graphene plays a significant role for the application of gas sensors. In this work, we proposed an efficient method to prepare ultrasensitive gas sensors based on the porous reduced graphene ...The defect engineering in graphene plays a significant role for the application of gas sensors. In this work, we proposed an efficient method to prepare ultrasensitive gas sensors based on the porous reduced graphene oxide(PRGO). Photo-Fenton etching was carried out on GO nanosheets in a controlled manner to enrich their vacancy defects. The resulting porous graphene oxide(PGO) was then drop-coated on interdigital electrodes and hydrothermal reduced at 180 °C. Controllable reduction was achieved by varying the water amount. The gas sensor based on PRGO-5 min-6h exhibited superior sensing and selective performance toward nitrogen dioxide(NO2), with an exceptional high sensitivity up to 12 ppm-1.The theoretical limit of detection is down to 0.66 ppb. The excellent performance could be mainly attributed to the typical vacancy defects of PRGO. Some residue carboxylic groups on the edges could also facilitate the adsorption of polar molecules. The process has a great potential for scalable fabrication of high-performance NO2gas sensors.展开更多
In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,...In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S)in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS2 is a candidate for a practical microwave absorbent.展开更多
基金financially supported by the National Natural Science Foundation of China(52073302,52103311)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.14JJ1001).
文摘Nowadays,the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health,so stretchable electromagnetic interference(EMI)shielding materials are highly demanded.Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins.Inspired by the wrinkled skin of the elephant trunks,herein,we propose a winkled conductive film based on single-walled carbon nanotubes(SWCNTs)for multifunctional EMI applications.The conductive film has a sandwich structure,which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate.The shrinking-induced winkled conductive network could withstand up to 200%tensile strain.Typically,when the stretching direction is parallel to the polarization direction of the electric field,the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200%tensile strain.It is mainly contributed by the increased connection of the SWCNTs.In addition,the film also has good Joule heating performance at several voltages,capable of releasing pains in injured joints.This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
基金financially supported by National Natural Science Foundation of China(Nos.61574172 and 31971291)Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.14JJ1001).
文摘The surface wrinkling of biological tissues is ubiquitous in nature.Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies.Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns,on either planar or curved surfaces.The surface wrinkling on planar substrates has been investigated thoroughly during the past decades.However,most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak.The study of wrinkling on curved substrates is critical for understanding the biological growth,developing threedimensional(3D)or four-dimensional(4D)fabrication techniques,and creating novel topographic patterns.In this review,fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized.The mechanics behind the wrinkles is compared between the planar and the curved cases.Beyond the film thickness,modulus ratio,and mismatch strain,the substrate curvature is one more significant parameter controlling the surface wrinkling.Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales.Up to date,the wrinkling morphologies on solid/hollow core-shell spheres and cylinders have been simulated and selectively produced.Emerging applications of the curved topographic patterns have been found in smart wetting surfaces,cell culture interfaces,healthcare materials,and actuators,which may accelerate the development of artificial organs,stimuli-responsive devices,and micro/nano fabrications with higher dimensions.
文摘A nuclear structure model of “ring plus extra nucleon” is proposed. For nuclei larger than 4He, protons (P) and neutrons (N) are basically bound alternatively to form a ZP + ZN ring. The ring folds with a “bond angle” of 90° for every 3 continuous nucleons to make the nucleons packed densely. Extra N(‘s) can bind to ring-P with the same “bond angle” and “bond distance”. When 2 or more P’s are geometrically available, the extra N tends to be stable. Extra P can bind with ring N in a similar way when the ratio of N/P < 1 although the binding is weaker than that of extra N. Even-Z rings, as well as normal even-even nuclei, always have superimposed gravity centers of P and N;while for odd-Z rings, as well as all odd-A (A: number of nucleon) nuclei, the centers of P and N must be eccentric. The eccentricity results in a depression of binding energy (EB) and therefore odd and even Z dependent zigzag features of EB/A. This can be well explained by the shift of eccentricity by extra nucleons. Symmetrical center may present in even-Z rings and normal even-even nuclei. While for odd-Z ring, only antisymmetric center (every P can find an N through the center and vice versa) is possible. Based on this model, a pair of mirror nuclei, PX+nNX and PXNX+n, should be equivalent in packing structure just like black-white photo and the negative film. Therefore, an identical spin and parity was confirmed for any pair. In addition, the EB/A difference of mirror nuclei pair is nearly a constant of 0.184n MeV. Many other facts can also be easily understood from this model, such as the neutron halo, the unusual stability sequence of 9Be, 7Be and 8Be and so on.
基金financially supported by National Natural Science Foundation of China (No. 52073302)。
文摘The defect engineering in graphene plays a significant role for the application of gas sensors. In this work, we proposed an efficient method to prepare ultrasensitive gas sensors based on the porous reduced graphene oxide(PRGO). Photo-Fenton etching was carried out on GO nanosheets in a controlled manner to enrich their vacancy defects. The resulting porous graphene oxide(PGO) was then drop-coated on interdigital electrodes and hydrothermal reduced at 180 °C. Controllable reduction was achieved by varying the water amount. The gas sensor based on PRGO-5 min-6h exhibited superior sensing and selective performance toward nitrogen dioxide(NO2), with an exceptional high sensitivity up to 12 ppm-1.The theoretical limit of detection is down to 0.66 ppb. The excellent performance could be mainly attributed to the typical vacancy defects of PRGO. Some residue carboxylic groups on the edges could also facilitate the adsorption of polar molecules. The process has a great potential for scalable fabrication of high-performance NO2gas sensors.
基金financially supported by the National Natural Science Foundation of China(No.21403298)。
文摘In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S)in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS2 is a candidate for a practical microwave absorbent.