Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus...Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.展开更多
A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expres...A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expression.We developed a nanoparticle drug delivery system(NDDS)to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A(DTA)fragment-encoded plasmids to tumor sites.The expression of DTA was induced by exposure to blue light.Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond,and PEGylated hyaluronic acid modified with RGD peptide,accumulated in tumor tissues and were actively internalized into 4 T1 cells via dual targeting to CD44 andαvβ3 receptors.The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure.In vitro studies showed that lisht-induced DTA expression reduced 4 T1 cell viability and induced apoptosis.Furthermore,the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4 T1 tumor xenogratt model,which resulted in excellent antitumor effects,reduced tumor angiogenesis,and no systemic toxicity.The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.展开更多
基金supported by National Key Research and Development Program of China(contract No.2019YFA0904800)National Nature Science Foundation of China(32030065,31722033,92049304 to Y.Z.)+5 种基金Shanghai Sailing Program(contract No.21YF1410300)Science and Technology Commission of Shanghai Municipality(contract No.10DZ2220500)The Shanghai Committee of Science and Technology(grant No.11DZ2260600)Shanghai Frontiers Science Center of Optogenetic Techniques for CellMetabolism(Y.Z.)Research Unit of New Techniques for Live-cell Metabolic Imaging(Chinese Academy of Medical Sciences,2019-I2M-5-013 to Y.Z.)the State Key Laboratory of Bioreactor Engineering,the Fundamental Research Funds for the Central Universities.
文摘Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.
基金supportedby Shanghai Municipal Natural Science Foundation(No.17ZR1406600,China)Science and Technology Commission of Shanghai Municipality(No.10DZ2220500,China)+1 种基金The Shanghai Committee of Science and Technology(Grant No.11DZ2260600,China)National Natural Science Foundation of China(Grant No.81973700)
文摘A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light,and have great potential for spatiotemporally controllable gene expression.We developed a nanoparticle drug delivery system(NDDS)to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A(DTA)fragment-encoded plasmids to tumor sites.The expression of DTA was induced by exposure to blue light.Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond,and PEGylated hyaluronic acid modified with RGD peptide,accumulated in tumor tissues and were actively internalized into 4 T1 cells via dual targeting to CD44 andαvβ3 receptors.The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure.In vitro studies showed that lisht-induced DTA expression reduced 4 T1 cell viability and induced apoptosis.Furthermore,the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4 T1 tumor xenogratt model,which resulted in excellent antitumor effects,reduced tumor angiogenesis,and no systemic toxicity.The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.