期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
同轴静电纺丝构筑微/纳米结构隔膜与电极材料用于锂离子电池:从原理到应用
1
作者 李琪 黎平安 +4 位作者 刘泽通 张佳辉 张浩 余维来 胡先罗 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第10期29-35,共7页
锂离子电池因其高能量密度、长循环寿命、优异的倍率性能和热稳定性而备受青睐,成为从便携式电子产品到电动汽车等实际应用中的最佳电源。在这种背景下,同轴静电纺丝技术因可制造适用于锂离子电池的独特纳米纤维材料而备受关注。尤其纤... 锂离子电池因其高能量密度、长循环寿命、优异的倍率性能和热稳定性而备受青睐,成为从便携式电子产品到电动汽车等实际应用中的最佳电源。在这种背景下,同轴静电纺丝技术因可制造适用于锂离子电池的独特纳米纤维材料而备受关注。尤其纤维材料具有高比表面积、高孔隙率、较大的长径比和易表面改性的优点,近年来在锂离子电池领域被广泛研究。这篇综述全面总结了同轴静电纺丝的基本原理、正极、负极和隔膜等锂离子电池关键材料的制备、实际应用和最新进展,并讨论了同轴静电纺纤维材料的纳米/微米结构决定其电化学性能的规律。此外,该综述分析了同轴静电纺丝未来的发展方向,强调了未来拓展同轴静电纺丝技术在锂离子电池领域的应用所面临的挑战。 展开更多
关键词 锂离子电池 同轴静电纺丝 微/纳结构材料 核-壳结构 电化学性能
下载PDF
Prediction of sepsis within 24 hours at the triage stage in emergency departments using machine learning
2
作者 Jingyuan Xie Jiandong Gao +8 位作者 Mutian Yang Ting Zhang Yecheng liu Yutong Chen zetong liu Qimin Mei Zhimao Li Huadong Zhu Ji Wu 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第5期379-385,共7页
BACKGROUND:Sepsis is one of the main causes of mortality in intensive care units(ICUs).Early prediction is critical for reducing injury.As approximately 36%of sepsis occur within 24 h after emergency department(ED)adm... BACKGROUND:Sepsis is one of the main causes of mortality in intensive care units(ICUs).Early prediction is critical for reducing injury.As approximately 36%of sepsis occur within 24 h after emergency department(ED)admission in Medical Information Mart for Intensive Care(MIMIC-IV),a prediction system for the ED triage stage would be helpful.Previous methods such as the quick Sequential Organ Failure Assessment(qSOFA)are more suitable for screening than for prediction in the ED,and we aimed to fi nd a light-weight,convenient prediction method through machine learning.METHODS:We accessed the MIMIC-IV for sepsis patient data in the EDs.Our dataset comprised demographic information,vital signs,and synthetic features.Extreme Gradient Boosting(XGBoost)was used to predict the risk of developing sepsis within 24 h after ED admission.Additionally,SHapley Additive exPlanations(SHAP)was employed to provide a comprehensive interpretation of the model's results.Ten percent of the patients were randomly selected as the testing set,while the remaining patients were used for training with 10-fold cross-validation.RESULTS:For 10-fold cross-validation on 14,957 samples,we reached an accuracy of 84.1%±0.3%and an area under the receiver operating characteristic(ROC)curve of 0.92±0.02.The model achieved similar performance on the testing set of 1,662 patients.SHAP values showed that the fi ve most important features were acuity,arrival transportation,age,shock index,and respiratory rate.CONCLUSION:Machine learning models such as XGBoost may be used for sepsis prediction using only a small amount of data conveniently collected in the ED triage stage.This may help reduce workload in the ED and warn medical workers against the risk of sepsis in advance. 展开更多
关键词 SEPSIS Machine learning Emergency department TRIAGE Informatics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部