期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene 被引量:8
1
作者 Shouwu Yu Shujuan Xiao +2 位作者 zewen zhao Xiaowen Huo Junfu Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1735-1743,共9页
Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier trans... Dipentaerythritol(DPER),4,40-diphenylmethanediisocyanate(MDI)and melamine(MEL)are used as raw materials to microencapsulate ammonium polyphosphate(MAPP)in situ polymerization.The MAPP is characterized by Fourier transform infrared(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate(APP),and MAPP has higher residual rate than that of APP after combustion.The flame retardant action of MAPP and APP in polypropylene(PP)is investigated by the limited oxygen index(LOI),vertical burning test(UL-94),TGA,SEM,and cone calorimeter test(CCT).The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite.UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt%loading.The results of CCT also show that MAPP is more efficient than APP.The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer.The flame retardant mechanism of PP/MAPP is also discussed. 展开更多
关键词 MICROENCAPSULATION SOLUBILITY AMMONIUM POLYPHOSPHATE PYROLYSIS Flame retardant Stability
下载PDF
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
2
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu zewen zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 Life cycle assessment Organic Rankine Cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部