Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited info...Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.展开更多
Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers...Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.展开更多
Members of the Malvaceae family,including Corchorus spp.,Gossypium spp.,Bombax spp.,and Ceiba spp.,are important sources of naturalfibers.In the past decade,the genomes of several Malvaceae species have been assembled...Members of the Malvaceae family,including Corchorus spp.,Gossypium spp.,Bombax spp.,and Ceiba spp.,are important sources of naturalfibers.In the past decade,the genomes of several Malvaceae species have been assembled;however,the evolutionary history of Malvaceae species and the differences in theirfiber development remain to be clarified.Here,we report the genome assembly and annotation of two nat-uralfiber plants from the Malvaceae,Bombax ceiba and Ceiba pentandra,whose assembled genome sizes are 783.56 Mb and 1575.47 Mb,respectively.Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number(2n=14 to 2n=96)and genome size(234 Mb to 2676 Mb)among Malvaceae species.We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromo-somes,providing new insights into the evolutionary trajectories of Malvaceae species.MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions infiber cell-fate determination in the epidermis.It appears to perform this function in any tissue where it is expressed,i.e.infibers on the endo-carp of B.ceiba and in ovulefibers of cotton.We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of thefiner,less spinnable,weakerfibers of B.ceiba.Our study provides two high-quality genomes of naturalfiber plants and offers insights into the evolution of Malvaceae species and differences in their naturalfiber formation and devel-opment through multi-omics analysis.展开更多
基金supported by the Ministry of Agriculture and Rural Affairs,China(2023ZD04039-01)the National Natural Science Foundation of China(32172008)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang,China(2019R01002)。
文摘Pectin is a major constituent of the plant cell wall.Pectate lyase(PEL,EC 4.2.2.2)uses anti-β-elimination chemistry to cleave theα-1,4 glycosidic linkage in the homogalacturonan region of pectin.However,limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.In this study,we identified 597PEL genes from 10 Malvaceae species.Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies:Clades I,II,III,IV,Va,and Vb.The two largest subfamilies,Clades I and II,contained 237 and222 PEL members,respectively.The members of Clades Va and Vb only contained four or five motifs,far fewer than the other subfamilies.Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.The PELs from Clades I,IV,Va,and Vb were expressed during the fiber elongation stage,but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.We further performed single-gene haplotype association analysis in 2,001G.hirsutum accessions and 229 G.barbadense accessions.Interestingly,14 PELs were significantly associated with fiber length and strength traits in G.barbadense with superior fiber quality,while only eight GhPEL genes were found to be significantly associated with fiber quality traits in G.hirsutum.Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.
基金funded by the International Cooperation Program of the Natural Science Foundation of China(No.52261135542)Zhejiang Provincial Natural Science Foundation of China(No.LD22E050002)the Russian Science Foundation(No.23-43-00057)for financial support。
文摘Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.
基金supported by the National Key R&D Program of China (2022YFF1001400)the National Natural Science Foundation of China (32341024)+4 种基金the 2021 Research Program of Sanya Yazhou Bay Science and Technology City (SKJC-2021-02-001)the Hainan Provincial Natural Science Foundation of China (323CXTD385)the Major Science and Technology Plan of Hainan Province (ZDKJ2021018)Research Startup Funding from the Hainan Institute of Zhejiang University (0202-6602-A12201)the Distinguished Discipline Support Program of Zhejiang University (226-2022-00100).
文摘Members of the Malvaceae family,including Corchorus spp.,Gossypium spp.,Bombax spp.,and Ceiba spp.,are important sources of naturalfibers.In the past decade,the genomes of several Malvaceae species have been assembled;however,the evolutionary history of Malvaceae species and the differences in theirfiber development remain to be clarified.Here,we report the genome assembly and annotation of two nat-uralfiber plants from the Malvaceae,Bombax ceiba and Ceiba pentandra,whose assembled genome sizes are 783.56 Mb and 1575.47 Mb,respectively.Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number(2n=14 to 2n=96)and genome size(234 Mb to 2676 Mb)among Malvaceae species.We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromo-somes,providing new insights into the evolutionary trajectories of Malvaceae species.MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions infiber cell-fate determination in the epidermis.It appears to perform this function in any tissue where it is expressed,i.e.infibers on the endo-carp of B.ceiba and in ovulefibers of cotton.We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of thefiner,less spinnable,weakerfibers of B.ceiba.Our study provides two high-quality genomes of naturalfiber plants and offers insights into the evolution of Malvaceae species and differences in their naturalfiber formation and devel-opment through multi-omics analysis.