BACKGROUND:This meta-analysis aimed to assess the efficacy of high-dose glucose-insulinpotassium(GIK) therapy on clinical outcomes in acute coronary syndrome(ACS) patients receiving reperfusion therapy.METHODS:We sear...BACKGROUND:This meta-analysis aimed to assess the efficacy of high-dose glucose-insulinpotassium(GIK) therapy on clinical outcomes in acute coronary syndrome(ACS) patients receiving reperfusion therapy.METHODS:We searched the PubMed,Web of Science,MEDLINE,Embase,and Cochrane Library databases from inception to April 26,2022,for randomized controlled trials(RCTs) that compared high-dose GIK and placebos in ACS patients receiving reperfusion therapy.The primary endpoint was major adverse cardiovascular events(MACEs).RESULTS:Eleven RCTs with 884 patients were ultimately included.Compared with placebos,high-dose GIK markedly reduced MACEs(risk ratio [RR] 0.57,95% confidence interval [95% CI]:0.35 to 0.94,P=0.03) and the risk of heart failure(RR 0.48,95% CI:0.25 to 0.95,P=0.04) and improved the left ventricular ejection fraction(LVEF)(mean difference [MD] 2.12,95% CI:0.40 to 3.92,P=0.02) at 6 months.However,no difference was observed in all-cause mortality at 30 d or 1 year.Additionally,high-dose GIK was significantly associated with increased incidences of phlebitis(RR 4.78,95% CI:1.36 to 16.76,P=0.01),hyperglycemia(RR 9.06,95% CI:1.74 to 47.29,P=0.009) and hypoglycemia(RR 6.50,95% CI:1.28 to 33.01,P=0.02) but not reinfarction,hyperkalemia or secondary reperfusion.In terms of oxidative stress-lowering function,high-dose GIK markedly reduced superoxide dismutase(SOD) activity but not glutathione peroxidase(GSH-Px) or catalase(CAT) activity.CONCLUSION:Patients with ACS receiving reperfusion therapy exhibited a reduction in MACEs and good oxidative stress-lowering eflcacy in response to high-dose GIK.Moreover,with a higher incidence of complications such as phlebitis,hyperglycemia,and hypoglycemia.Furthermore,there were no observed survival benefits associated with high-dose GIK.More trials with long-term follow-up are still needed.展开更多
The interspecific variations of plant functional traits can characterize the niche positions of species within communities,while the intraspecific variations can accurately display the species’niche breadth.Revealing...The interspecific variations of plant functional traits can characterize the niche positions of species within communities,while the intraspecific variations can accurately display the species’niche breadth.Revealing relative contributions of intra-and interspecific variations to plant functional community structure is crucial in understanding how the species coexist together,especially in species-diverse ecosystems.To explore how the intra-and interspecific variations of plant functional traits change along the successional pathway in heterogeneous conditions,we established a series of plots and measured main plant functional traits along the natural regeneration in karst forest ecosystems.By quantifying the intra-and interspecific variations of plant functional traits,we found that the changes in intraspecific variations were relatively lower compared to changes in interspecific variations throughout the natural regeneration.Further analysis showed that the community spatial structure contributed more to the intraspecific variations of plant functional traits,while the soil physicochemical properties contributed more to interspecific variations.Our study suggested that tree species might tend to narrow their niche and change the positions to release the niche overlap when faced with heterogeneous habitat conditions.展开更多
The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,i...The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,it is important to understand the current protection status of their distribution sites at pre-migration period and migration routes.Thirty-three individuals were tagged with satellite transmitters at Fantuo Island in Changhai and Xingren Island in Zhuanghe,Liaoning Province,northeastern China,in July of 2016,2017,and 2018,to identify important distribution sites during the pre-migration period,as well as detailed migration routes.The results showed that coastal mudflats in Liaoning and the west coast of North Korea were important feeding and roosting sites for fledgling Chinese Egrets from August to September.The home range sizes in August were significantly larger than in September.The eastern coast from Shandong to Guangdong,as well as Taiwan,China,and Manila Bay and Galileo Islands in the Philippines,were important stopover sites during fall migration.Specifically,we found that the egrets’autumn migration could be divided into four routes,i.e.,sea-crossing migration(SCM),coastal migration(CM),inland migration(IM),and mixed migration(MM).The migration distance,timing,speed,and straightness of the four routes also differed.The SCM routes were the straightest,and had the fastest migration speed and shortest travel time,while the IM routes had the lowest straightness and speed,and the longest duration.Manila Bay and Bohol Island in the Philippines,the west coast of Tanintharyi in Myanmar,and the Zengwun River Estuary in Taiwan,China,were wintering sites.Our findings on the key distribution sites along pre-migration and fall migration routes,including some stopover sites,have important implications for the conservation of and global action plan development for the vulnerable Chinese Egret.展开更多
The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protec...The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protected bird species in China.Understanding this species'seasonal movements and migration will facilitate effective conservation to promote its population.We tagged 27 Oriental Stork nestlings at Xingkai Lake on the Sanjiang Plain in Heilongjiang Province,China,used GPS tracking to follow them over the periods of 2014-2017 and 2019-2022,and confirmed their detailed migratory routes using the spatial analysis function of ArcGIS 10.7.We discovered four migration routes during autumn migration:one common long-distance migration route in which the storks migrated along the coastline of Bohai Bay to the middle and lower reaches of the Yangtze River for wintering,one short-distance migration route in which the storks wintered in Bohai Bay and two other migration routes in which the storks crossed the Bohai Strait around the Yellow River and wintered in South Korea.There were no significant differences in the number of migration days,residence days,migration distances,number of stopovers and average number of days spent at stopover sites between the autumn and spring migrations(P>0.05).However,the storks migrated significantly faster in spring than in autumn(P=0.03).The same individuals did not exhibit a high degree of repetition in their migration timing and route selection in either autumn or spring migration.Even storks from the same nest exhibited considerable between-individual variation in their migration routes.Some important stopover sites were identified,especially in the Bohai Rim Region and on the Songnen Plain,and we further explored the current conservation status at these two important sites.Overall,our results contribute to the understanding of the annual migration,dispersal and protection status of the endangered Oriental Stork and provide a scientific basis for conservation decisions and the development of action plans for this species.展开更多
Multi-scale object detection is a research hotspot,and it has critical applications in many secure systems.Although the object detection algorithms have constantly been progressing recently,how to perform highly accur...Multi-scale object detection is a research hotspot,and it has critical applications in many secure systems.Although the object detection algorithms have constantly been progressing recently,how to perform highly accurate and reliable multi-class object detection is still a challenging task due to the influence of many factors,such as the deformation and occlusion of the object in the actual scene.The more interference factors,the more complicated the semantic information,so we need a deeper network to extract deep information.However,deep neural networks often suffer from network degradation.To prevent the occurrence of degradation on deep neural networks,we put forth a new model using a newly-designed Pre-ReLU,which inserts a ReLU layer before the convolution layer for the sake of preventing network degradation and ensuring the performance of deep networks.This structure can transfer the semantic information more smoothly from the shallow to the deep layer.However,the deep networks will encounter not only degradation,but also a decline in efficiency.Therefore,to speed up the two-stage detector,we divide the feature map into many groups so as to diminish the number of parameters.Correspondingly,calculation speed has been enhanced,achieving a balance between speed and accuracy.Through mathematical demonstration,a Balanced Loss(BL)is proposed by a balance factor to decrease the weight of the negative sample during the training phase to balance the positives and negatives.Finally,our detector demonstrates rosy results in a range of experiments and gains an mAP of 73.38 on PASCAL VOC2007,which approaches the requirement of many security systems.展开更多
This paper focuses on the design of residential buildings oriented to the efficient use of solar energy,and selects the entries HUI HOUSE of Hefei University of Technology and Lille I University of France in the 3rd C...This paper focuses on the design of residential buildings oriented to the efficient use of solar energy,and selects the entries HUI HOUSE of Hefei University of Technology and Lille I University of France in the 3rd China International Solar Decathlon China Competition,based on the theory of the life cycle assessment(LCA)of buildings,and analyzes the carbon footprint from four aspects:building materials production and transportation stage,building construction stage,building operation stage,and building demolition stage.Through the calculation of the carbon footprint of buildings,the socio-economic benefits of HUI HOUSE in carbon reduction were analyzed;the result of the calculation was that HUI HOUSE achieved carbon neutrality in the ninth year,and continued carbon reduction after that,contributing a cumulative total of 947.54 tons of carbon negative in the life cycle of buildings.展开更多
Crop residue burning(CRB)is a major contributor to air pollution in China.Current fire detection methods,however,are limited by either temporal resolution or accuracy,hindering the analysis of CRB's diurnal charac...Crop residue burning(CRB)is a major contributor to air pollution in China.Current fire detection methods,however,are limited by either temporal resolution or accuracy,hindering the analysis of CRB's diurnal characteristics.Here we explore the diurnal spatiotemporal patterns and environmental impacts of CRB in China from 2019 to 2021 using the recently released NSMC-Himawari-8 hourly fire product.Our analysis identifies a decreasing directionality in CRB distribution in the Northeast and a notable southward shift of the CRB center,especially in winter,averaging an annual southward movement of 7.5.Additionally,we observe a pronounced skewed distribution in daily CRB,predominantly between 17:00 and 20:00.Notably,nighttime CRB in China for the years 2019,2020,and 2021 accounted for 51.9%,48.5%,and 38.0%respectively,underscoring its significant environmental impact.The study further quantifies the hourly emissions from CRB in China over this period,with total emissions of CO,PM10,and PM_(2.5) amounting to 12,236,2,530,and 2,258 Gg,respectively.Our findings also reveal variable lag effects of CRB on regional air quality and pollutants across different seasons,with the strongest impacts in spring and more immediate effects in late autumn.This research provides valuable insights for the regulation and control of diurnal CRB before and after large-scale agricultural activities in China,as well as the associated haze and other pollution weather conditions it causes.展开更多
人工智能与物联网时代,大数据模型驱动的应用场景和计算任务层出不穷,极大促进了国家数字化发展.然而,传统冯·诺依曼(John von Neumann)体系架构的硬件系统由于存算分离的结构特点导致存储墙瓶颈,在数据密集型应用中消耗了大量的...人工智能与物联网时代,大数据模型驱动的应用场景和计算任务层出不穷,极大促进了国家数字化发展.然而,传统冯·诺依曼(John von Neumann)体系架构的硬件系统由于存算分离的结构特点导致存储墙瓶颈,在数据密集型应用中消耗了大量的数据搬运成本,抑制了能效性能提升.存算一体技术是后摩尔(Moore)时代背离传统架构系统的新型计算范式,利用存储单元器件、电路内在特性,将基本的计算逻辑任务融入存储单元之中,从而消除数据搬运开销,有望实现智能计算硬件平台能效性能的显著提升.本文以契合存算一体技术的存储器件电路为切入点,概述基于传统互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)和新型非易失存储器件代表铁电晶体管的存算一体电路,并从器件、架构芯片、算法应用等层次讨论存算一体电路的跨层次协同设计优化方法.展开更多
Mitogen-activated protein kinase kinase kinase(MAPKKK)are the first components of MAPK cascades,which play pivotal roles in signaling during plant development and physiological processes.The genome of rice encodes 75 ...Mitogen-activated protein kinase kinase kinase(MAPKKK)are the first components of MAPK cascades,which play pivotal roles in signaling during plant development and physiological processes.The genome of rice encodes 75 MAPKKKs,of which 43 are Raf-like MAPKKKs.The functions and action modes of most of the Raf-like MAPKKKs,whether they function as bona fide MAPKKKs and which are their downstream MAPKKs,are largely unknown.Here,we identified the osmapkkk43 mutant,which conferred broad-spectrum resistance to Xanthomonas oryzae pv.oryzae(Xoo),the destructive bacterial pathogen of rice.Oryza sativa(Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1(OsILA1).Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4-OsMAPK6 cascade in rice-Xoo interactions.Unlike classical MAPKKKs,OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4,which possibly influenced the stability of OsMAPKK4.The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity.Taken together,our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4-OsMAPK6 cascade and is involved in rice-Xoo interactions.展开更多
MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in res...MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance.展开更多
Background:Radiation ulcers are a common and severe injury after uncontrolled exposure to ionizing radiation.The most important feature of radiation ulcers is progressive ulceration,which results in the expansion of r...Background:Radiation ulcers are a common and severe injury after uncontrolled exposure to ionizing radiation.The most important feature of radiation ulcers is progressive ulceration,which results in the expansion of radiation injury to the nonirradiated area and refractory wounds.Current theories cannot explain the progression of radiation ulcers.Cellular senescence refers to as irre-versible growth arrest that occurs after exposure to stress,which contributes to tissue dysfunction by inducing paracrine senescence,stem cell dysfunction and chronic inflammation.However,it is not yet clear how cellular senescence facilitates the continuous progression of radiation ulcers.Here,we aim to investigate the role of cellular senescence in promoting progressive radiation ulcers and indicate a potential therapeutic strategy for radiation ulcers.Methods:Radiation ulcer animal models were established by local exposure to 40 Gy X-ray radiation and continuously evaluated for>260 days.The roles of cellular senescence in the progression of radiation ulcers were assessed using pathological analysis,molecular detection and RNA sequencing.Then,the therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells(uMSC-CM)were investigated in radiation ulcer models.Results:Radiation ulcer animal models with features of clinical patients were established to investigate the primary mechanisms responsible for the progression of radiation ulcers.We have characterized cellular senescence as being closely associated with the progression of radiation ulcers and found that exogenous transplantation of senescent cells significantly aggravated them.Mechanistic studies and RNA sequencing suggested that radiation-induced senescent cell secretions were responsible for facilitating paracrine senescence and promoting the progression of radiation ulcers.Finally,we found that uMSC-CM was effective in mitigating the progression of radiation ulcers by inhibiting cellular senescence.Conclusions:Our findings not only characterize the roles of cellular senescence in the progression of radiation ulcers but also indicate the therapeutic potential of senescent cells in their treatment.展开更多
基金supported by grants from the National Natural Science Foundation of China (82370378 and 82070388)Taishan Scholar Program of Shandong Province (tsqn202211310)National Natural Science Foundation of Shandong Province (ZR2020MH035)。
文摘BACKGROUND:This meta-analysis aimed to assess the efficacy of high-dose glucose-insulinpotassium(GIK) therapy on clinical outcomes in acute coronary syndrome(ACS) patients receiving reperfusion therapy.METHODS:We searched the PubMed,Web of Science,MEDLINE,Embase,and Cochrane Library databases from inception to April 26,2022,for randomized controlled trials(RCTs) that compared high-dose GIK and placebos in ACS patients receiving reperfusion therapy.The primary endpoint was major adverse cardiovascular events(MACEs).RESULTS:Eleven RCTs with 884 patients were ultimately included.Compared with placebos,high-dose GIK markedly reduced MACEs(risk ratio [RR] 0.57,95% confidence interval [95% CI]:0.35 to 0.94,P=0.03) and the risk of heart failure(RR 0.48,95% CI:0.25 to 0.95,P=0.04) and improved the left ventricular ejection fraction(LVEF)(mean difference [MD] 2.12,95% CI:0.40 to 3.92,P=0.02) at 6 months.However,no difference was observed in all-cause mortality at 30 d or 1 year.Additionally,high-dose GIK was significantly associated with increased incidences of phlebitis(RR 4.78,95% CI:1.36 to 16.76,P=0.01),hyperglycemia(RR 9.06,95% CI:1.74 to 47.29,P=0.009) and hypoglycemia(RR 6.50,95% CI:1.28 to 33.01,P=0.02) but not reinfarction,hyperkalemia or secondary reperfusion.In terms of oxidative stress-lowering function,high-dose GIK markedly reduced superoxide dismutase(SOD) activity but not glutathione peroxidase(GSH-Px) or catalase(CAT) activity.CONCLUSION:Patients with ACS receiving reperfusion therapy exhibited a reduction in MACEs and good oxidative stress-lowering eflcacy in response to high-dose GIK.Moreover,with a higher incidence of complications such as phlebitis,hyperglycemia,and hypoglycemia.Furthermore,there were no observed survival benefits associated with high-dose GIK.More trials with long-term follow-up are still needed.
基金supported by the National Natural Science Foundation of China(Nos.32360380,32360278)the Guizhou Provincial Key Technology R&D Program(General[2023]111)the Basic Research Program in Guizhou Province(ZK[2022]General 098,ZK[2022]General 036,ZK[2022]General 079).
文摘The interspecific variations of plant functional traits can characterize the niche positions of species within communities,while the intraspecific variations can accurately display the species’niche breadth.Revealing relative contributions of intra-and interspecific variations to plant functional community structure is crucial in understanding how the species coexist together,especially in species-diverse ecosystems.To explore how the intra-and interspecific variations of plant functional traits change along the successional pathway in heterogeneous conditions,we established a series of plots and measured main plant functional traits along the natural regeneration in karst forest ecosystems.By quantifying the intra-and interspecific variations of plant functional traits,we found that the changes in intraspecific variations were relatively lower compared to changes in interspecific variations throughout the natural regeneration.Further analysis showed that the community spatial structure contributed more to the intraspecific variations of plant functional traits,while the soil physicochemical properties contributed more to interspecific variations.Our study suggested that tree species might tend to narrow their niche and change the positions to release the niche overlap when faced with heterogeneous habitat conditions.
基金supported by the National Key Research and Development Program of China (No. 2019YFA0607103)Program of National Forestry and Grassland Administration (No.213023721203)
文摘The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,it is important to understand the current protection status of their distribution sites at pre-migration period and migration routes.Thirty-three individuals were tagged with satellite transmitters at Fantuo Island in Changhai and Xingren Island in Zhuanghe,Liaoning Province,northeastern China,in July of 2016,2017,and 2018,to identify important distribution sites during the pre-migration period,as well as detailed migration routes.The results showed that coastal mudflats in Liaoning and the west coast of North Korea were important feeding and roosting sites for fledgling Chinese Egrets from August to September.The home range sizes in August were significantly larger than in September.The eastern coast from Shandong to Guangdong,as well as Taiwan,China,and Manila Bay and Galileo Islands in the Philippines,were important stopover sites during fall migration.Specifically,we found that the egrets’autumn migration could be divided into four routes,i.e.,sea-crossing migration(SCM),coastal migration(CM),inland migration(IM),and mixed migration(MM).The migration distance,timing,speed,and straightness of the four routes also differed.The SCM routes were the straightest,and had the fastest migration speed and shortest travel time,while the IM routes had the lowest straightness and speed,and the longest duration.Manila Bay and Bohol Island in the Philippines,the west coast of Tanintharyi in Myanmar,and the Zengwun River Estuary in Taiwan,China,were wintering sites.Our findings on the key distribution sites along pre-migration and fall migration routes,including some stopover sites,have important implications for the conservation of and global action plan development for the vulnerable Chinese Egret.
基金supported by National Key Research and Development Program of China(No.2019YFA0607103)the National Forestry and Grassland Administration of China(91217-2022,202999922001,213023721203)。
文摘The Oriental Stork(Ciconia boyciana)is listed as'Endangered'on the International Union for the Conservation of Nature(IUCN)Red List of Threatened Species and is classified as a first category nationally protected bird species in China.Understanding this species'seasonal movements and migration will facilitate effective conservation to promote its population.We tagged 27 Oriental Stork nestlings at Xingkai Lake on the Sanjiang Plain in Heilongjiang Province,China,used GPS tracking to follow them over the periods of 2014-2017 and 2019-2022,and confirmed their detailed migratory routes using the spatial analysis function of ArcGIS 10.7.We discovered four migration routes during autumn migration:one common long-distance migration route in which the storks migrated along the coastline of Bohai Bay to the middle and lower reaches of the Yangtze River for wintering,one short-distance migration route in which the storks wintered in Bohai Bay and two other migration routes in which the storks crossed the Bohai Strait around the Yellow River and wintered in South Korea.There were no significant differences in the number of migration days,residence days,migration distances,number of stopovers and average number of days spent at stopover sites between the autumn and spring migrations(P>0.05).However,the storks migrated significantly faster in spring than in autumn(P=0.03).The same individuals did not exhibit a high degree of repetition in their migration timing and route selection in either autumn or spring migration.Even storks from the same nest exhibited considerable between-individual variation in their migration routes.Some important stopover sites were identified,especially in the Bohai Rim Region and on the Songnen Plain,and we further explored the current conservation status at these two important sites.Overall,our results contribute to the understanding of the annual migration,dispersal and protection status of the endangered Oriental Stork and provide a scientific basis for conservation decisions and the development of action plans for this species.
基金supported by the Science and Technology Project of Sichuan(Nos.2019YFG0504,2021YFG0314,2020YFG0459)the National Natural Science Foundation of China(Grant Nos.61872066 and U19A2078).
文摘Multi-scale object detection is a research hotspot,and it has critical applications in many secure systems.Although the object detection algorithms have constantly been progressing recently,how to perform highly accurate and reliable multi-class object detection is still a challenging task due to the influence of many factors,such as the deformation and occlusion of the object in the actual scene.The more interference factors,the more complicated the semantic information,so we need a deeper network to extract deep information.However,deep neural networks often suffer from network degradation.To prevent the occurrence of degradation on deep neural networks,we put forth a new model using a newly-designed Pre-ReLU,which inserts a ReLU layer before the convolution layer for the sake of preventing network degradation and ensuring the performance of deep networks.This structure can transfer the semantic information more smoothly from the shallow to the deep layer.However,the deep networks will encounter not only degradation,but also a decline in efficiency.Therefore,to speed up the two-stage detector,we divide the feature map into many groups so as to diminish the number of parameters.Correspondingly,calculation speed has been enhanced,achieving a balance between speed and accuracy.Through mathematical demonstration,a Balanced Loss(BL)is proposed by a balance factor to decrease the weight of the negative sample during the training phase to balance the positives and negatives.Finally,our detector demonstrates rosy results in a range of experiments and gains an mAP of 73.38 on PASCAL VOC2007,which approaches the requirement of many security systems.
文摘This paper focuses on the design of residential buildings oriented to the efficient use of solar energy,and selects the entries HUI HOUSE of Hefei University of Technology and Lille I University of France in the 3rd China International Solar Decathlon China Competition,based on the theory of the life cycle assessment(LCA)of buildings,and analyzes the carbon footprint from four aspects:building materials production and transportation stage,building construction stage,building operation stage,and building demolition stage.Through the calculation of the carbon footprint of buildings,the socio-economic benefits of HUI HOUSE in carbon reduction were analyzed;the result of the calculation was that HUI HOUSE achieved carbon neutrality in the ninth year,and continued carbon reduction after that,contributing a cumulative total of 947.54 tons of carbon negative in the life cycle of buildings.
基金supported by the Open Research Program of the International Research Center of Big Data for Sustainable Development Goals(Grant No.CBAS2022ORP02)the National Natural Science Foundation of China(Grant No.42171399).
文摘Crop residue burning(CRB)is a major contributor to air pollution in China.Current fire detection methods,however,are limited by either temporal resolution or accuracy,hindering the analysis of CRB's diurnal characteristics.Here we explore the diurnal spatiotemporal patterns and environmental impacts of CRB in China from 2019 to 2021 using the recently released NSMC-Himawari-8 hourly fire product.Our analysis identifies a decreasing directionality in CRB distribution in the Northeast and a notable southward shift of the CRB center,especially in winter,averaging an annual southward movement of 7.5.Additionally,we observe a pronounced skewed distribution in daily CRB,predominantly between 17:00 and 20:00.Notably,nighttime CRB in China for the years 2019,2020,and 2021 accounted for 51.9%,48.5%,and 38.0%respectively,underscoring its significant environmental impact.The study further quantifies the hourly emissions from CRB in China over this period,with total emissions of CO,PM10,and PM_(2.5) amounting to 12,236,2,530,and 2,258 Gg,respectively.Our findings also reveal variable lag effects of CRB on regional air quality and pollutants across different seasons,with the strongest impacts in spring and more immediate effects in late autumn.This research provides valuable insights for the regulation and control of diurnal CRB before and after large-scale agricultural activities in China,as well as the associated haze and other pollution weather conditions it causes.
文摘人工智能与物联网时代,大数据模型驱动的应用场景和计算任务层出不穷,极大促进了国家数字化发展.然而,传统冯·诺依曼(John von Neumann)体系架构的硬件系统由于存算分离的结构特点导致存储墙瓶颈,在数据密集型应用中消耗了大量的数据搬运成本,抑制了能效性能提升.存算一体技术是后摩尔(Moore)时代背离传统架构系统的新型计算范式,利用存储单元器件、电路内在特性,将基本的计算逻辑任务融入存储单元之中,从而消除数据搬运开销,有望实现智能计算硬件平台能效性能的显著提升.本文以契合存算一体技术的存储器件电路为切入点,概述基于传统互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)和新型非易失存储器件代表铁电晶体管的存算一体电路,并从器件、架构芯片、算法应用等层次讨论存算一体电路的跨层次协同设计优化方法.
基金This work was supported by grants from the National Key Research and Development Program of China(2016YFD0100600,2016YFD 0100903)the National Natural Science Foundation of China(31821005,31772145,31822042,31871946)the Fundamental Research Funds for the Central Universities(2662019FW006).
文摘Mitogen-activated protein kinase kinase kinase(MAPKKK)are the first components of MAPK cascades,which play pivotal roles in signaling during plant development and physiological processes.The genome of rice encodes 75 MAPKKKs,of which 43 are Raf-like MAPKKKs.The functions and action modes of most of the Raf-like MAPKKKs,whether they function as bona fide MAPKKKs and which are their downstream MAPKKs,are largely unknown.Here,we identified the osmapkkk43 mutant,which conferred broad-spectrum resistance to Xanthomonas oryzae pv.oryzae(Xoo),the destructive bacterial pathogen of rice.Oryza sativa(Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1(OsILA1).Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4-OsMAPK6 cascade in rice-Xoo interactions.Unlike classical MAPKKKs,OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4,which possibly influenced the stability of OsMAPKK4.The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity.Taken together,our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4-OsMAPK6 cascade and is involved in rice-Xoo interactions.
基金supported by grants from the National Natural Science Foundation of China(31821005,31822042,and 31871946)the National Science Foundation of Hubei Province(2020CFA058)the Fundamental Research Funds for the Central Universities(2662019FW006).
文摘MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance.
基金supported by the Key Program of the National Natural Science Foundation of China(82030056)the Intramural Research Project Grants(2021-JCJQ-ZD-077-11,AWS17J007 and 2018-JCJQ-ZQ-001)Postdoctoral Innovative Talent Support Program in Chongqing(CQBX2021010).
文摘Background:Radiation ulcers are a common and severe injury after uncontrolled exposure to ionizing radiation.The most important feature of radiation ulcers is progressive ulceration,which results in the expansion of radiation injury to the nonirradiated area and refractory wounds.Current theories cannot explain the progression of radiation ulcers.Cellular senescence refers to as irre-versible growth arrest that occurs after exposure to stress,which contributes to tissue dysfunction by inducing paracrine senescence,stem cell dysfunction and chronic inflammation.However,it is not yet clear how cellular senescence facilitates the continuous progression of radiation ulcers.Here,we aim to investigate the role of cellular senescence in promoting progressive radiation ulcers and indicate a potential therapeutic strategy for radiation ulcers.Methods:Radiation ulcer animal models were established by local exposure to 40 Gy X-ray radiation and continuously evaluated for>260 days.The roles of cellular senescence in the progression of radiation ulcers were assessed using pathological analysis,molecular detection and RNA sequencing.Then,the therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells(uMSC-CM)were investigated in radiation ulcer models.Results:Radiation ulcer animal models with features of clinical patients were established to investigate the primary mechanisms responsible for the progression of radiation ulcers.We have characterized cellular senescence as being closely associated with the progression of radiation ulcers and found that exogenous transplantation of senescent cells significantly aggravated them.Mechanistic studies and RNA sequencing suggested that radiation-induced senescent cell secretions were responsible for facilitating paracrine senescence and promoting the progression of radiation ulcers.Finally,we found that uMSC-CM was effective in mitigating the progression of radiation ulcers by inhibiting cellular senescence.Conclusions:Our findings not only characterize the roles of cellular senescence in the progression of radiation ulcers but also indicate the therapeutic potential of senescent cells in their treatment.