As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristi...As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1) the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2) intervention measures should be introduced in the competition between individuals; (3) guide individuals should be added; and (4) specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.展开更多
For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitorin...For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high展开更多
In this paper, two different concepts for the constitutive modeling of the mechanical behavior of creep-sensitive rockfill materials are presented. Specifically, the performance of an extended generalized plasticity m...In this paper, two different concepts for the constitutive modeling of the mechanical behavior of creep-sensitive rockfill materials are presented. Specifically, the performance of an extended generalized plasticity model proposed by Wang is compared with a simplified version of the hypoplastic constitutive model for weathered rockfill materials proposed by Bauer. Both models can reflect the influence of the mean stress on the incremental stiffness, the peak friction angle, and the dilatancy angle. The so-called solid hardness defined for a continuum description and originally introduced by Bauer is embedded in both models. Hydrochemical, thermal, and mechanical weathering are usually caused by environmental changes and are taken into account in a phenomenological description with an irreversible and time-dependent degradation of the solid hardness. A degradation of the solid hardness is usually accompanied by creep deformation of the stressed rockfill material. It is shown that appropriate modeling of creep deformation requires at least a unified description of the interaction between the time-dependent process of degradation of the solid hardness and the stress state. In this context, the solid hardness can be understood as a key parameter for describing the evolution of the state of weathering of the rockfill material. Particular attention is also paid to the necessary procedure for determining the constitutive constants of the two different constitutive models. Finally, the performance of the two different constitutive models is demonstrated by comparing the results obtained from numerical simulations with experimental data from the creep-sensitive rockfill material.展开更多
Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initi...Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initial state, that is, the ability to adapt to disaster pressure. Resilience is a major subject of research on disaster prevention and mitigation. This research mainly focuses on the ability of the hydraulic structure to recover from the significant impacts of typhoons. According to the load/unload response ratio theory, the degree of instability by which nonlinear systems can be identified according to the difference between load and unload responses was analyzed. This analysis was used as a basis to study the resilience of a hydraulic structure. Taking the Yangtze River embankments under the impact of Typhoon Matsa as an example, the ability of the typical sections of different types of embankments to adapt to the significant impact of the typhoon, i.e., the resilience of the hydraulic structure, is described with the help of the load/unload response ratio (L). The results of the calculated resilience reflect the actual conditions of the structure and can be used to determine the applicability of the embankment section. The load/unload response ratio theory is one of the effective tools for calculating the resilience of hydraulic structures under the significant impacts of typhoons.展开更多
Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension mo...Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension model and the interface tension model.The role of interface tension during welding is revealed,and the evolution of molten pool morphology is understood by comparing the surface temperature distribution,surface tension and interface tension distribution,and the streamline of the molten pool for the two cases.When the interface tension model is disregarded,a flow conducive to the outward expansion is formed in the surface area of the molten pool,resulting in a small weld depth-to-width ratio.After applying the interface tension model,the expanding outward flow is restrained,which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces.The simulation results involving the interface tension model have been verified with satisfactory predictability.展开更多
基金supported by the Science and Technology Support Program of Jiangsu Province(Grant No.BE2010738)Jiangsu Colleges and Universities Natural Science Foundation Funded Project(Grant No.08KJB620001)the Qing Lan Project of Jiangsu Province
文摘As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1) the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2) intervention measures should be introduced in the competition between individuals; (3) guide individuals should be added; and (4) specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.
基金supported by the National Natural Science Foundation of China(Grants No.51179108and50909066)the Key Research Foundation of Nanjing Hydraulic Research Institute(Grant No.Y711007)
文摘For the evaluation of construction quality and the verification of the design of water conservancy and hydropower engineering projects, and especially for the control of dam safety operation behavior, safety monitoring sensors are employed in a majority of engineering projects. These sensors are used to monitor the project during the dam construction and operation periods, and play an important role in reservoir safety operation and producing benefits. With the changing of operating environments and run-time of projects, there are some factors affecting the operation and management of projects, such as a certain amount of damaged sensors and instability of the measured data. Therefore, it is urgent to evaluate existing safety monitoring sensors in water conservancy and hydropower engineering projects. However, there are neither standards nor evaluation guidelines at present. Based on engineering practice, this study examined some key techniques for the evaluation of safety monitoring sensors, including the evaluation process of the safety monitoring system, on-site detection methods of two typical pieces of equipment, the differential resistor sensor and vibrating wire sensor, the on-site detection methods of communication cable faults, and a validity test of the sensor measured data. These key techniques were applied in the Xiaolangdi Water Control Project and Xiaoxi Hydropower Project. The results show that the measured data of a majority of sensors are reliable and reasonable, and can reasonably reflect the structural change behavior in the project operating process, indicating that the availabilities of the safety monitoring sensors of the two projects are high
基金supported by the CRSRI Open Research Program(Grant No.CKWV2016375/KY)the National Natural Science Foundation of China(Grants No.51609182,51379130,and 51209141)the Chinese Scholarship Council
文摘In this paper, two different concepts for the constitutive modeling of the mechanical behavior of creep-sensitive rockfill materials are presented. Specifically, the performance of an extended generalized plasticity model proposed by Wang is compared with a simplified version of the hypoplastic constitutive model for weathered rockfill materials proposed by Bauer. Both models can reflect the influence of the mean stress on the incremental stiffness, the peak friction angle, and the dilatancy angle. The so-called solid hardness defined for a continuum description and originally introduced by Bauer is embedded in both models. Hydrochemical, thermal, and mechanical weathering are usually caused by environmental changes and are taken into account in a phenomenological description with an irreversible and time-dependent degradation of the solid hardness. A degradation of the solid hardness is usually accompanied by creep deformation of the stressed rockfill material. It is shown that appropriate modeling of creep deformation requires at least a unified description of the interaction between the time-dependent process of degradation of the solid hardness and the stress state. In this context, the solid hardness can be understood as a key parameter for describing the evolution of the state of weathering of the rockfill material. Particular attention is also paid to the necessary procedure for determining the constitutive constants of the two different constitutive models. Finally, the performance of the two different constitutive models is demonstrated by comparing the results obtained from numerical simulations with experimental data from the creep-sensitive rockfill material.
基金supported by the National Natural Science Foundation of China (Grants No.50909066 and51179108)
文摘Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initial state, that is, the ability to adapt to disaster pressure. Resilience is a major subject of research on disaster prevention and mitigation. This research mainly focuses on the ability of the hydraulic structure to recover from the significant impacts of typhoons. According to the load/unload response ratio theory, the degree of instability by which nonlinear systems can be identified according to the difference between load and unload responses was analyzed. This analysis was used as a basis to study the resilience of a hydraulic structure. Taking the Yangtze River embankments under the impact of Typhoon Matsa as an example, the ability of the typical sections of different types of embankments to adapt to the significant impact of the typhoon, i.e., the resilience of the hydraulic structure, is described with the help of the load/unload response ratio (L). The results of the calculated resilience reflect the actual conditions of the structure and can be used to determine the applicability of the embankment section. The load/unload response ratio theory is one of the effective tools for calculating the resilience of hydraulic structures under the significant impacts of typhoons.
基金The authors sincerely thank the National Natural Science Foundation of China(Grant Nos.U20A20277,52150610494,52104295,52011530180 and 52050410341)Research Fund for Central Universities(Grant Nos.N2125016 and N2025025)Young Elite Scientists Sponsorship Program by CAST(YESS)(Grant No.2021-2023QNRC001).
文摘Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel.One case only involved the surface tension model,and another one involved both the surface tension model and the interface tension model.The role of interface tension during welding is revealed,and the evolution of molten pool morphology is understood by comparing the surface temperature distribution,surface tension and interface tension distribution,and the streamline of the molten pool for the two cases.When the interface tension model is disregarded,a flow conducive to the outward expansion is formed in the surface area of the molten pool,resulting in a small weld depth-to-width ratio.After applying the interface tension model,the expanding outward flow is restrained,which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces.The simulation results involving the interface tension model have been verified with satisfactory predictability.