提出并实现了一个本地轻量化课程教学智能辅助系统.该系统利用IPEX-LLM(Intel PyTorch extention for large language model)加速库,在计算资源受限的设备上高效部署并运行经过QLoRA(quantum-logic optimized resource allocation)框架...提出并实现了一个本地轻量化课程教学智能辅助系统.该系统利用IPEX-LLM(Intel PyTorch extention for large language model)加速库,在计算资源受限的设备上高效部署并运行经过QLoRA(quantum-logic optimized resource allocation)框架微调的大语言模型,并结合增强检索技术,实现了智能问答、智能出题、教学大纲生成、教学演示文档生成等4个主要功能模块的课程灵活定制,在帮助教师提高教学备课和授课的质量与效率、保护数据隐私的同时,支撑学生个性化学习并提供实时反馈.在性能实验中,以集成优化后的Chatglm3-6B模型为例,该系统处理64-token输出任务时仅需4.08 s,验证了其在资源受限环境下快速推理的能力.在实践案例分析中,通过与原生Chatgml-6B和ChatGPT4.0在功能实现上的对比,进一步表明了该系统具备优越的准确性和实用性.展开更多
文摘提出并实现了一个本地轻量化课程教学智能辅助系统.该系统利用IPEX-LLM(Intel PyTorch extention for large language model)加速库,在计算资源受限的设备上高效部署并运行经过QLoRA(quantum-logic optimized resource allocation)框架微调的大语言模型,并结合增强检索技术,实现了智能问答、智能出题、教学大纲生成、教学演示文档生成等4个主要功能模块的课程灵活定制,在帮助教师提高教学备课和授课的质量与效率、保护数据隐私的同时,支撑学生个性化学习并提供实时反馈.在性能实验中,以集成优化后的Chatglm3-6B模型为例,该系统处理64-token输出任务时仅需4.08 s,验证了其在资源受限环境下快速推理的能力.在实践案例分析中,通过与原生Chatgml-6B和ChatGPT4.0在功能实现上的对比,进一步表明了该系统具备优越的准确性和实用性.