To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter re...In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.展开更多
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261 and 61876089)+3 种基金the Natural Science Foundation of Anhui(1908085MF207,KJ2020A1215,KJ2021A1251 and KJ2021A1253)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097 and gxyqZD2021142)the Postdoctoral Foundation of Jiangsu(2018K009B)the Foundation of Fuyang Normal University(TDJC2021008).
文摘In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.