Commercial application of lithium-sulfur(Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray's carbon nanostructure...Commercial application of lithium-sulfur(Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray's carbon nanostructure(N-MCN) with interconnected micro-meso-macroporous structure and a polydopamine protection shell has been designed as an effective sulfur host for high-performance Li-S batteries. The advanced 3D hierarchically porous framework with the characteristics of the generalized Murray's law largely improves electrolyte diffusion, facilitates electrons/ions transfer and provides strong chemisorption for active species, leading to the synergistic structural and chemical confinement of polysulfides. As a result,the obtained P@S/N-MCN electrode with high areal sulfur loading demonstrates high capacity at high current densities after long cycles. This work reveals that following the generalized Murray's law is feasible to design high-performance sulfur cathode materials for potentially practical Li-S battery applications.展开更多
A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam he...A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.展开更多
Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalyt...Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.展开更多
基金financially supported by National Key Research and Development Program of China [2016YFA0202602, 2021YFE0115800]National Natural Science Foundation of China [22275142, U22B6011, U20A20122, 21671155]+4 种基金Program of Introducing Talents of Discipline to Universities-Plan 111 from the Ministry of Science and Technology and the Ministry of Education of China [Grant No. B20002]Sinopec Ministry of Science and Technology Basic Prospective Research Project [218025-9]Natural Science Foundation of Hubei Province [2021CFB082]Scientific Research Foundation of Wuhan Institute of Technology [K2021042]the Open Key Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing [Wuhan University of Technology, 2022-KF-10]。
文摘Commercial application of lithium-sulfur(Li-S) batteries is hindered by the insulating nature of sulfur and the dissolution of polysulfides. Here, a bioinspired 3D urchin-like N-doped Murray's carbon nanostructure(N-MCN) with interconnected micro-meso-macroporous structure and a polydopamine protection shell has been designed as an effective sulfur host for high-performance Li-S batteries. The advanced 3D hierarchically porous framework with the characteristics of the generalized Murray's law largely improves electrolyte diffusion, facilitates electrons/ions transfer and provides strong chemisorption for active species, leading to the synergistic structural and chemical confinement of polysulfides. As a result,the obtained P@S/N-MCN electrode with high areal sulfur loading demonstrates high capacity at high current densities after long cycles. This work reveals that following the generalized Murray's law is feasible to design high-performance sulfur cathode materials for potentially practical Li-S battery applications.
基金supported by the National Natural Science Foundation of China(Grants No.51779153,51539006,and 51509156)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161121)
文摘A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models.
文摘Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.