To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagati...Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagation of a single crack,it can be extended to microcrack cluster so as to reflect the macroscopic failure characteristic.Besides,it can be derived as HoekeBrown criterion when the intermediate principal stress σ_(2) is equal to the minimum principal stress σ_(3)(Zuo et al.,2015).In addition,the opening direction of the microcrack cluster decreases with the increase of the intermediate principal stress coefficient,which could be described by an empirical function and verified by 10 kinds of hard rocks.Rock strength is influenced by the coupled effect of stress level and the opening direction of the microcrack clusters related to the stress level.As the effects of these two factors on the strength are opposite,the intermediate principal stress effect is induced.展开更多
In this study,servo-controlled biaxial compression tests were conducted on marble specimens to investigate their failure characteristics and fracturing process.The complete stressestrain curves were obtained,and the t...In this study,servo-controlled biaxial compression tests were conducted on marble specimens to investigate their failure characteristics and fracturing process.The complete stressestrain curves were obtained,and the three-dimensional(3D)features of the failure surfaces were acquired by 3D laser scanning.Acoustic emission(AE)monitoring and moment tensor(MT)analysis were used in combination to better understand the fracturing mechanism of marble under biaxial compression.It was noted that a type of 3D stepwise cracking behaviour occurred on the fracturing surfaces of the examined specimens.The stress dropped multiple times,and a repeated fracturing mode corresponding to the repeated stress drops in the post-peak regime was observed.Three substages,i.e.stress stabilisation,stress decrease and stress increase,were identified for a single fracturing mode.Then quantitative and statistical analyses of the fracturing process at each substage were discussed.Based on the testing results,it was found that at the stress stabilisation substage,the proportion of mixed-mode fractures increased.At the stress decrease substage,the proportion of mixed-mode fractures decreased,and the tensile or shear fractures increased.At the stress increase substage,the proportion of mixed-mode or tensile fractures decreased,and the shear fractures increased.Finally,a conceptual model for the stepwise crack formation was proposed.展开更多
Homogeneous Zn Se nanocrystals were prepared via surfactant-assisted hydrothermal method.Surfactants agent CTAB was used to control the particle morphology and the growth rate.The structure,morphology and optical prop...Homogeneous Zn Se nanocrystals were prepared via surfactant-assisted hydrothermal method.Surfactants agent CTAB was used to control the particle morphology and the growth rate.The structure,morphology and optical properties of Zn Se nanocrystals have been investigated by XRD,TEM and luminescence spectroscopy.The results indicated that the size of Zn Se nanocrystals ranged from 3.0 nm to 5.0 nm with cubic zinc blende structure.Zn Se nanocrystals coated by CTAB were revealed high dispersibility and distribution under TEM.Compared to the bulk Zn Se,the absorption edges and photoluminescence peaks of Zn Se nanocrystals were blue shifted to higher energies due to the quantum confinement effect.The emission intensity was strengthened after coated CTAB compared to bare sample.This was mainly due to the surface passivation.Meanwhile,we simply explored the formation mechanism of Zn Se nanocrystal in hydrothermal system.展开更多
[Objectives]This study was conducted to optimize the germplasm resources of Gastrodia elata and improve the condition of declining G.elata production.[Methods]A scientific and reasonable method was used to screen the ...[Objectives]This study was conducted to optimize the germplasm resources of Gastrodia elata and improve the condition of declining G.elata production.[Methods]A scientific and reasonable method was used to screen the optimum nutritional conditions(carbon sources,nitrogen sources,microelements,vitamins)and environmental conditions(pH,temperature,light)of Armillaria mellea A9 growth,so as to screen the medium suitable for the growth of A.mellea.[Results]Under the semi-solid culture condition,the suitable pH range of A.mellea mycelia was 4.0-9.0;the temperature was about 25℃;and the light condition was dark culture.Under the experimental conditions,the optimal carbon source was 25 g/L ethanol;the optimal nitrogen source was 2.5 g/L soy peptone;and the optimum microelement and vitamin were 0.5 g/L MnSO 4,0.5 g/L MgSO 4 and 20 mg/L vitamin B6,respectively.After screening,the growth rate of A.mellea rhizomorph was as high as 13.52 mm/d,and the dry weight of mycelium also reached 0.296 7 g.[Conclusions]This study not only omitted a lot of tedious experiments,but also obtained reliable and scientific experimental results,and achieved the purpose of rejuvenating A.mellea,which is conducive to the further development and utilization of G.elata and its symbiotic fungi.展开更多
Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation indu...Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.展开更多
Time-varying coefficient models are useful in longitudinal data analysis. Various efforts have been invested for the estimation of the coefficient functions, based on the least squares principle. Related work includes...Time-varying coefficient models are useful in longitudinal data analysis. Various efforts have been invested for the estimation of the coefficient functions, based on the least squares principle. Related work includes smoothing spline and kernel methods among others, but these methods suffer from the shortcoming of non-robustness. In this paper, we introduce a local M-estimation method for estimating the coefficient functions and develop a robustified generalized likelihood ratio (GLR) statistic to test if some of the coefficient functions are constants or of certain parametric forms. The robustified GLR test is robust against outliers and the error distribution. This provides a useful robust inference tool for the models with longitudinal data. The bandwidth selection issue is also addressed to facilitate the implementation in practice. Simulations show that the proposed testing method is more powerful in some situations than its counterpart based on the least squares principle. A real example is also given for illustration.展开更多
High mountain valleys are characterized by the development of intricate ground stress fields due to geological processes such as tectonic stress,river erosion,and rock weathering.These processes introduce considerable...High mountain valleys are characterized by the development of intricate ground stress fields due to geological processes such as tectonic stress,river erosion,and rock weathering.These processes introduce considerable stability concerns in the surrounding rock formations for underground engineering projects in these regions,highlighting the imperative need for rigorous stability assessments during the design phase to ensure construction safety.This paper introduces an innovative approach for the pre-evaluation of the stability of surrounding rocks in underground caverns situated within high mountain valleys.The methodology comprises several pivotal steps.Initially,we conduct inverse calculations of the ground stress field in complex geological terrains,combining field monitoring and numerical simulations.Subsequently,we ascertain stress-strength ratios of the surrounding rocks using various rock strength criteria.To assess the stability characteristics of the surrounding rocks in the 1^(#)spillway cave within our project area,we employ numerical simulations to compute stress-strength ratios based on different rock strength criteria.Furthermore,we undertake a comparative analysis,utilizing data from the 5^(#)Underground Laboratory(Lab 5)of Jinping II Hydropower Station,aligning the chosen rock strength criterion with the damage characteristics of Lab 50s surrounding rocks.This analysis serves as the cornerstone for evaluating other mechanical responses of the surrounding rocks,thereby validating the pre-evaluation methodology.Our pre-evaluation method takes into account the intricate geological evolution processes specific to high mountain valleys.It also considers the influence of the initial geostress field within the geological range of underground caverns.This comprehensive approach provides a robust foundation for the analysis and assessment of the stability of surrounding rocks,especially in high mountain valley areas,during the design phase of underground engineering projects.The insights derived from this analysis hold substantial practical significance for the effective guidance of such projects.展开更多
The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At pre...The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation ti...Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation time.When used as lubricant in a diamond-like carbon film/bearing steel interface,the nanofluids achieved an ultra-low friction coefficient(μ≈0.02),much lower than that of original polyethylene glycol(μ=0.12).The worn surface analyses revealed that the nanofluids could effectively inhibit the tribo-oxidation of steel counterpart that occurred under original polyethylene glycol lubrication,and hence reduced the abrasion component of friction.Especially,the poly-hydroxyl carbon dots and oxidized polyethylene glycol species in nanofluids induced a hydroxyl-rich sliding interface via their tribochemical reactions with friction surfaces,which promoted the adsorption of polyethylene glycol molecules on sliding surfaces.Along with the mild corrosion wear of steel counterface,this shifted the boundary lubrication to a mixed/film lubrication regime,thereby achieving an ultra-low friction coefficient.The above results suggest that the polyethylene glycol derived carbon quantum dots nanofluids should be a quite excellent candidate lubricant for solid–liquid synergy lubrication based on diamond-like carbon films.展开更多
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signa...The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signaling pathway,which promotes cell proliferation,inhibits cell apoptosis,and ultimately contributes to the occurrence and development of cancer.BRAF mutations are widely present in various cancers,including malignant melanoma,thyroid cancer,colorectal cancer,non-small cell lung cancer,and hairy cell leukemia,among others.BRAF is an important target for the treatment of various solid tumors,and targeted combination therapies,represented by BRAF inhibitors,have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金the National Natural Science Foundation of China(Grant No.52225404)Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911413037).
文摘Based on fracture mechanics theory and wing crack model,a three-dimensional strength criterion for hard rock was developed in detail in this paper.Although the basic expression is derived from initiation and propagation of a single crack,it can be extended to microcrack cluster so as to reflect the macroscopic failure characteristic.Besides,it can be derived as HoekeBrown criterion when the intermediate principal stress σ_(2) is equal to the minimum principal stress σ_(3)(Zuo et al.,2015).In addition,the opening direction of the microcrack cluster decreases with the increase of the intermediate principal stress coefficient,which could be described by an empirical function and verified by 10 kinds of hard rocks.Rock strength is influenced by the coupled effect of stress level and the opening direction of the microcrack clusters related to the stress level.As the effects of these two factors on the strength are opposite,the intermediate principal stress effect is induced.
基金financial support received from the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(Grant No.QYZDJ-SSW-DQC016)。
文摘In this study,servo-controlled biaxial compression tests were conducted on marble specimens to investigate their failure characteristics and fracturing process.The complete stressestrain curves were obtained,and the three-dimensional(3D)features of the failure surfaces were acquired by 3D laser scanning.Acoustic emission(AE)monitoring and moment tensor(MT)analysis were used in combination to better understand the fracturing mechanism of marble under biaxial compression.It was noted that a type of 3D stepwise cracking behaviour occurred on the fracturing surfaces of the examined specimens.The stress dropped multiple times,and a repeated fracturing mode corresponding to the repeated stress drops in the post-peak regime was observed.Three substages,i.e.stress stabilisation,stress decrease and stress increase,were identified for a single fracturing mode.Then quantitative and statistical analyses of the fracturing process at each substage were discussed.Based on the testing results,it was found that at the stress stabilisation substage,the proportion of mixed-mode fractures increased.At the stress decrease substage,the proportion of mixed-mode fractures decreased,and the tensile or shear fractures increased.At the stress increase substage,the proportion of mixed-mode or tensile fractures decreased,and the shear fractures increased.Finally,a conceptual model for the stepwise crack formation was proposed.
基金supported by the National Natural Science Foundation of China (10874061)Research Fund for the Doctoral Program of Higher Education (200807300010)the National Science Foundation for Distinguished Young Scholars (50925206)
文摘Homogeneous Zn Se nanocrystals were prepared via surfactant-assisted hydrothermal method.Surfactants agent CTAB was used to control the particle morphology and the growth rate.The structure,morphology and optical properties of Zn Se nanocrystals have been investigated by XRD,TEM and luminescence spectroscopy.The results indicated that the size of Zn Se nanocrystals ranged from 3.0 nm to 5.0 nm with cubic zinc blende structure.Zn Se nanocrystals coated by CTAB were revealed high dispersibility and distribution under TEM.Compared to the bulk Zn Se,the absorption edges and photoluminescence peaks of Zn Se nanocrystals were blue shifted to higher energies due to the quantum confinement effect.The emission intensity was strengthened after coated CTAB compared to bare sample.This was mainly due to the surface passivation.Meanwhile,we simply explored the formation mechanism of Zn Se nanocrystal in hydrothermal system.
文摘[Objectives]This study was conducted to optimize the germplasm resources of Gastrodia elata and improve the condition of declining G.elata production.[Methods]A scientific and reasonable method was used to screen the optimum nutritional conditions(carbon sources,nitrogen sources,microelements,vitamins)and environmental conditions(pH,temperature,light)of Armillaria mellea A9 growth,so as to screen the medium suitable for the growth of A.mellea.[Results]Under the semi-solid culture condition,the suitable pH range of A.mellea mycelia was 4.0-9.0;the temperature was about 25℃;and the light condition was dark culture.Under the experimental conditions,the optimal carbon source was 25 g/L ethanol;the optimal nitrogen source was 2.5 g/L soy peptone;and the optimum microelement and vitamin were 0.5 g/L MnSO 4,0.5 g/L MgSO 4 and 20 mg/L vitamin B6,respectively.After screening,the growth rate of A.mellea rhizomorph was as high as 13.52 mm/d,and the dry weight of mycelium also reached 0.296 7 g.[Conclusions]This study not only omitted a lot of tedious experiments,but also obtained reliable and scientific experimental results,and achieved the purpose of rejuvenating A.mellea,which is conducive to the further development and utilization of G.elata and its symbiotic fungi.
基金This research was funded by the National Science Foundation under the Project“Synergic evolution mechanism of intercity transportation and metropolitan tourism spatial pattern”[Grant number.41771162]It was also funded by the National First-Class Discipline Development Project in Hunan Province under the category of“Geography”[Grang number.510002].
文摘Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.
文摘Time-varying coefficient models are useful in longitudinal data analysis. Various efforts have been invested for the estimation of the coefficient functions, based on the least squares principle. Related work includes smoothing spline and kernel methods among others, but these methods suffer from the shortcoming of non-robustness. In this paper, we introduce a local M-estimation method for estimating the coefficient functions and develop a robustified generalized likelihood ratio (GLR) statistic to test if some of the coefficient functions are constants or of certain parametric forms. The robustified GLR test is robust against outliers and the error distribution. This provides a useful robust inference tool for the models with longitudinal data. The bandwidth selection issue is also addressed to facilitate the implementation in practice. Simulations show that the proposed testing method is more powerful in some situations than its counterpart based on the least squares principle. A real example is also given for illustration.
基金supported by the National Natural Science Foundation of China(Grant Nos.52339001 and 52209149)Natural Science Foundation of Jiangxi Province(Grant No.20232BAB204092).
文摘High mountain valleys are characterized by the development of intricate ground stress fields due to geological processes such as tectonic stress,river erosion,and rock weathering.These processes introduce considerable stability concerns in the surrounding rock formations for underground engineering projects in these regions,highlighting the imperative need for rigorous stability assessments during the design phase to ensure construction safety.This paper introduces an innovative approach for the pre-evaluation of the stability of surrounding rocks in underground caverns situated within high mountain valleys.The methodology comprises several pivotal steps.Initially,we conduct inverse calculations of the ground stress field in complex geological terrains,combining field monitoring and numerical simulations.Subsequently,we ascertain stress-strength ratios of the surrounding rocks using various rock strength criteria.To assess the stability characteristics of the surrounding rocks in the 1^(#)spillway cave within our project area,we employ numerical simulations to compute stress-strength ratios based on different rock strength criteria.Furthermore,we undertake a comparative analysis,utilizing data from the 5^(#)Underground Laboratory(Lab 5)of Jinping II Hydropower Station,aligning the chosen rock strength criterion with the damage characteristics of Lab 50s surrounding rocks.This analysis serves as the cornerstone for evaluating other mechanical responses of the surrounding rocks,thereby validating the pre-evaluation methodology.Our pre-evaluation method takes into account the intricate geological evolution processes specific to high mountain valleys.It also considers the influence of the initial geostress field within the geological range of underground caverns.This comprehensive approach provides a robust foundation for the analysis and assessment of the stability of surrounding rocks,especially in high mountain valley areas,during the design phase of underground engineering projects.The insights derived from this analysis hold substantial practical significance for the effective guidance of such projects.
基金supported by the National Natural Science Foundation of China(52073206,52273193)the Fundamental Research Funds for the Central UniversitiesTianjin University 2021 Postgraduate Education Special Fund(B2-2021-005)。
基金supported by the National Natural Science Foundation of China (Grant Nos.52125903).
文摘The interaction between multiple fractures is important in the analysis of rock fracture propagation,fracture network evolution and stability and integrity of rocks under hydro-mechanical(HM)coupling conditions.At present,modeling the mechanical behavior of multiple fractures is still challenging.Under the condition of multiple fractures,the opening,closing,sliding,propagation and penetration of fractures become more complicated.In order to simulate the HM coupling behavior of multi-fracture system,the paper presents a novel numerical scheme,including mesh reconstruction and topology generation algorithm,to efficiently and accurately represent fractures and their propagation process,and a potential function-based algorithm to address contact problem.The fracture contact algorithm does not need to set contact pairs and thus is suitable for complex contact situations from small to large deformations induced by HM loading.The topology of fracture interfaces is constructed by the dynamic adding algorithm,which makes the mesh reconstruction more rapid in the modeling of fracturing process,especially in the case of multiple fractures intersections.The numerical scheme is implemented in CASRock,a self-developed numerical code,to simulate the propagation process of rock fractures and the interaction of multiple fractures under the condition of HM coupling.To verify the suitability of the code,a series of tests were performed.The code was then applied to simulate hydraulic fracture propagation and fracture interactions caused by fluid injection.The ability of this method to study fracture propagation,multi-fracture interaction and fracture network evolution under hydro-mechanical coupling conditions is demonstrated.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
基金This work was financially supported by the National Natural Science Foundation of China(No.51805519)the Natural Science Foundation for Distinguished Young Scholars of Gansu Province(No.20JR5RA572).
文摘Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation time.When used as lubricant in a diamond-like carbon film/bearing steel interface,the nanofluids achieved an ultra-low friction coefficient(μ≈0.02),much lower than that of original polyethylene glycol(μ=0.12).The worn surface analyses revealed that the nanofluids could effectively inhibit the tribo-oxidation of steel counterpart that occurred under original polyethylene glycol lubrication,and hence reduced the abrasion component of friction.Especially,the poly-hydroxyl carbon dots and oxidized polyethylene glycol species in nanofluids induced a hydroxyl-rich sliding interface via their tribochemical reactions with friction surfaces,which promoted the adsorption of polyethylene glycol molecules on sliding surfaces.Along with the mild corrosion wear of steel counterface,this shifted the boundary lubrication to a mixed/film lubrication regime,thereby achieving an ultra-low friction coefficient.The above results suggest that the polyethylene glycol derived carbon quantum dots nanofluids should be a quite excellent candidate lubricant for solid–liquid synergy lubrication based on diamond-like carbon films.
基金supported by the Natural Science Foundation of China(grant number 82002456)China Postdoctoral Science Foundation(grant number 2022M723207)+10 种基金the Medical Scientific Research Foundation of Zhejiang Province,China(grant number 2023KY666)Zhejiang Traditional Chinese Medicine Science Fund Project(grant number 2024ZL372)Qiantang Cross Fund Project(grant number 2023-16)National Natural Science Foundation of China of Zhejiang Cancer Hospital Cultivation Project(grant number PY2023006)the Medical Scientific Research Foundation of Zhejiang Province,China(grant number 2024KY812)the Natural Science Foundation of Zhejiang Province(grant number LQ24H160036)Beijing Health Technologies Promotion Program[grant number BHTPP2022041]Peking University Clinical Scientist Training Program and the Fundamental Research Funds for the Central Universities[grant number BMU2024PYJH010]Science Foundation of Peking University Cancer Hospital[grant number PY202333]the Beijing Natural Science Foundation[grant number 7232248]Beijing Hospitals Authority Youth Programme[grant number QML20231902].
文摘The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth,differentiation,and survival.When the BRAF gene mutates,it can lead to abnormal activation of the signaling pathway,which promotes cell proliferation,inhibits cell apoptosis,and ultimately contributes to the occurrence and development of cancer.BRAF mutations are widely present in various cancers,including malignant melanoma,thyroid cancer,colorectal cancer,non-small cell lung cancer,and hairy cell leukemia,among others.BRAF is an important target for the treatment of various solid tumors,and targeted combination therapies,represented by BRAF inhibitors,have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors.