Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec...Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.展开更多
Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are li...Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.展开更多
The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(...The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(PCE) has attained over 25%, the contamination of health-hazardous components still holds back its sustainable applications. To reduce the lead usage, many groups have tried chemical lead reduction solutions: substituting the lead by other group 14 metal elements to realize the low-lead OHPSCs. Unfortunately, neither the PCE nor the stability, low-lead OHPSCs all lag far behind the state-ofthe-art conventional lead-based OHPSCs. In this work, we present a physical lead reduction(PLR) concept by reducing the perovskite film thickness to restrict the perovskite hazard risk with minor scarification in device performances. Through the simulation of transfer matrix model, we theoretically demonstrated that by introducing the optical space layer, the device PCE could maintain 96% of the original maximum value while attenuating the perovskite film thickness to one-third. This means that the usage of lead can be reduced by $70% with PLR concept, which could have broad appeal as a new lead reduction strategy towards high performance OHPSCs.展开更多
Iridium complexes with dicyanovinyl-grafted phenylpyridine/l-phenylisoquinoline as ligands are synthesized and their photo- physical, electrochemical, and sensitization properties in DSSCs are investigated. The iridiu...Iridium complexes with dicyanovinyl-grafted phenylpyridine/l-phenylisoquinoline as ligands are synthesized and their photo- physical, electrochemical, and sensitization properties in DSSCs are investigated. The iridium complexes present significantly enhanced absorption from 400 to 525 nm. The 1-phenylisoquinoline-based iridium complex show bathochromic-shift emission in DMSO solution compared with their phenylpyridine-based counterpart, while their absorption response and photoluminescence peak in solid show little difference despite extension of the conjugated system. Using DSSCs, the conversion efficiency of 0.62% and open-circuit current of 1.4 mA/cm2 is achieved. The poor performance is attributed to the excited-state properties of iridium complexes according to the TD-DFT calculation.展开更多
Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve t...Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve this problem, we propose an imaging method, so-called round-trip imaging, based on the optical transmission matrix of the scattering medium. We show that the object can be recovered directly from the distorted output wave, where no scanning is required during the imaging process. We predict that this method might improve the imaging speed and have potential application for real-time imaging.展开更多
In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-em...In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-emitting devices (PHOLEDs). The Me- DBSiB was constructed by linking 9-methyl-9-silafluorene units to the phenyl framework through the sp3-hybridized silica atom to maintain high singlet and triplet energy, as well as to enhance thermal and photo-stability. The calculated result shows that the phenyl core does not contribute to both the highest occupied molecular orbital and lowest unoccupied molecular orbital. Wide optical energy gap of 4.1 eV was achieved. When the Me-DBSiB was used as the host and iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N,C2']picolate (Firpic) as the guest, a maximum current efficiency was 14.8 cd/A, lower than the counterpart of 1,3-bis(9-carbazolyl)benzene (28 cd/A). The unbalanced barrier for electron and hole injection to host layer may be responsible for low efficiency. Even so, our results show that silafluorene moieties are promising building blocks for constructing wide-energy-gap host materials.展开更多
基金This study was supported by the National Nat-ural Science Foundation of China(No.22379105)the Natural Sci-ence Foundation of Shanxi Province(Nos.20210302123110 and 202303021211059)the Open Fund Project of Ningxia Sinostar Display Material Co.,Ltd.
文摘Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.
基金supported by the National Natural Science Foundation of China(61935016,62275213 and 62205264),the National Natural Science Foundation of China(21961160720)the Fundamental Research Funds for Xi'an Jiaotong University(xzy012022092,xzd012022003 and xzy022022057)+1 种基金the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)。
文摘Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.
基金supported by the National Basic Research Program of China (2015CB932203)the National Natural Science Foundation of China (91733301, 61722501, 61377025, 91433203, and 61604121)Postdoctoral Innovative Talents Support Project (8206200013)
文摘The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(PCE) has attained over 25%, the contamination of health-hazardous components still holds back its sustainable applications. To reduce the lead usage, many groups have tried chemical lead reduction solutions: substituting the lead by other group 14 metal elements to realize the low-lead OHPSCs. Unfortunately, neither the PCE nor the stability, low-lead OHPSCs all lag far behind the state-ofthe-art conventional lead-based OHPSCs. In this work, we present a physical lead reduction(PLR) concept by reducing the perovskite film thickness to restrict the perovskite hazard risk with minor scarification in device performances. Through the simulation of transfer matrix model, we theoretically demonstrated that by introducing the optical space layer, the device PCE could maintain 96% of the original maximum value while attenuating the perovskite film thickness to one-third. This means that the usage of lead can be reduced by $70% with PLR concept, which could have broad appeal as a new lead reduction strategy towards high performance OHPSCs.
基金supported by the Fundamental Research Funds for the Central Universities(08143034)the National Basic Research Program of China(2013CB328705,2013CB328706)the National Natural Science Foundation of China(61275034,61106123)
文摘Iridium complexes with dicyanovinyl-grafted phenylpyridine/l-phenylisoquinoline as ligands are synthesized and their photo- physical, electrochemical, and sensitization properties in DSSCs are investigated. The iridium complexes present significantly enhanced absorption from 400 to 525 nm. The 1-phenylisoquinoline-based iridium complex show bathochromic-shift emission in DMSO solution compared with their phenylpyridine-based counterpart, while their absorption response and photoluminescence peak in solid show little difference despite extension of the conjugated system. Using DSSCs, the conversion efficiency of 0.62% and open-circuit current of 1.4 mA/cm2 is achieved. The poor performance is attributed to the excited-state properties of iridium complexes according to the TD-DFT calculation.
基金supported by the National Natural Science Foundation of China(Nos.61535015,61275149,and 61275086)the Special Scientific Research Plan from Education Department of Shaanxi Provincial Government(No.16JK1083)
文摘Traditional one-way imaging methods become invalid when a target object is completely hidden behind scattering media. In this case, it has been much more challenging, since the light wave is distorted twice.To solve this problem, we propose an imaging method, so-called round-trip imaging, based on the optical transmission matrix of the scattering medium. We show that the object can be recovered directly from the distorted output wave, where no scanning is required during the imaging process. We predict that this method might improve the imaging speed and have potential application for real-time imaging.
基金supported by the Fundamental Research Funds for the Central Universities(08143034)the National Basic Research Program of China(2013CB328705)the National Natural Science Foundation of China(61275034,61106123)
文摘In this article, we reported the synthesis and characterization of a novel silafluorene-based host material, 1,3-bis(5-methyl-5H- dibenzo[b,d]silol-5-yl)benzene (Me-DBSiB), for blue phosphorescent organic light-emitting devices (PHOLEDs). The Me- DBSiB was constructed by linking 9-methyl-9-silafluorene units to the phenyl framework through the sp3-hybridized silica atom to maintain high singlet and triplet energy, as well as to enhance thermal and photo-stability. The calculated result shows that the phenyl core does not contribute to both the highest occupied molecular orbital and lowest unoccupied molecular orbital. Wide optical energy gap of 4.1 eV was achieved. When the Me-DBSiB was used as the host and iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N,C2']picolate (Firpic) as the guest, a maximum current efficiency was 14.8 cd/A, lower than the counterpart of 1,3-bis(9-carbazolyl)benzene (28 cd/A). The unbalanced barrier for electron and hole injection to host layer may be responsible for low efficiency. Even so, our results show that silafluorene moieties are promising building blocks for constructing wide-energy-gap host materials.