The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(>...The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(> 400 ℃) conditions.Herein, a highly active catalytic conversion process of ethane at room temperature(25 ℃) is reported on single iron atoms confined in graphene via the porphyrin-like N4-coordination structures.Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C2 chemicals, simultaneously avoiding the over-oxidation of the products to CO2.The in-situ formed O–FeN4–O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals.This work deepens the understanding of alkane C–H activation on the FeN4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane.展开更多
The catalytic activity of noble-metal nanocrystals is mainly determined by their sizes and the facets exposed on the surface. For single crystals, it has been demonstrated that the Pd(100) surface is catalytically m...The catalytic activity of noble-metal nanocrystals is mainly determined by their sizes and the facets exposed on the surface. For single crystals, it has been demonstrated that the Pd(100) surface is catalytically more active than both Pd(110) and Pd(111) surfaces for the CO oxidation reaction. Here we report the synthesis of Pd nanocrystals enclosed by {100} facets with controllable sizes in the range of 6-18 nm by manipulating the rate of reduction of the precursor. UV-vis spectroscopy studies indicate that the rate of reduction of Na2PdC14 can be controlled by adjusting the concentrations of Br- and C1- ions added to the reaction mixture. Pd nanocrystals with different sizes were immobilized on ZnO nanowires and evaluated as catalysts for CO oxidation. We found that the activity of this catalytic system for CO oxidation showed a strong dependence on the nanocrystal size. When the size of the Pd nanocrystals was reduced from 18 nm to 6 nm, the maximum conversion rate was significantly enhanced by a factor of -10 and the corresponding maximum conversion temperature was lowered by -80℃.展开更多
Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled...Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flower- like structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of -1.1 nm. The specific surface area measured by CO stripping was 79.3 m2-g-1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces.展开更多
Recently,metal-organic framework(MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-basedartificial enzymes are attracting increasing attention due to their high cataly...Recently,metal-organic framework(MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-basedartificial enzymes are attracting increasing attention due to their high catalytic efficiency and promising application in sensing.Simpleand controllable integration of enzymes or nanozymes within MOFs is crucial for achieving efficient cascade catalysis and high stability.Here,we report a facile electrochemical assisted biomimetic mineralization strategy to prepare an artificial multienzyme system for efficient electrochemicaldetection of biomolecules.By using the G0x@Cu-MOF/copper foam(G0x@Cu-MOF/CF)architecture as a proof of concept,efficientenzyme immobilization and cascade catalysis were achieved by in situ encapsulation of glucose oxidase(GOx)within MOFs layer grown onthree-dimensional(3D)porous conducting CF via a facile one-step electrochemical assisted biomimetic mineralization strategy.Due to thebio-electrocatalytic cascade reaction mechanism,this well-designed GOx@Cu-MOF modified electrode exhibited superior catalytic activityand thermal stability for glucose sensing.Notably,the activity of GOx@Cu-MOF/CF still remained at ca.80%after being incubated at 80℃.In sharp contrast,the activity of the unprotected electrode was reduced to the original 10%after the same treatment.The design strategypresented here may be useful in fabricating highly stable enzyme@MOF composites applied for efficient photothermal therapy and otherplatform under high temperature.展开更多
The high cost and poor durability of Pt nanoparticles(NPs)have always been great challenges to the commercialization of proton exchange membrane fuel cells(PEMFCs).Pt-based intermetallic NPs with a highly ordered stru...The high cost and poor durability of Pt nanoparticles(NPs)have always been great challenges to the commercialization of proton exchange membrane fuel cells(PEMFCs).Pt-based intermetallic NPs with a highly ordered structure are considered as promising catalysts for PEMFCs due to their high catalytic activity and stability.Here,we reported a facile method to synthesize N-doped carbon encapsulated PtZn intermetallic(PtZn@NC)NPs via the pyrolysis of Pt@Zn-based zeolitic imidazolate framework-8(Pt@ZIF-8)composites.The catalyst obtained at 800℃(10%-PtZn@NC-800)was found to exhibit a half-wave potential(Ev2)up to 0.912 V versus reversible hydrogen electrode(RHE)for the cathodic oxygen reduction reaction in an acidic medium,which shifted by 26 mV positively compared to the benchmark Pt/C catalyst.Besides,the mass activity and specific activity of 10%-PtZn@NC-800 at 0.9 V versus RHE were nearly 3 and 5 times as great as that of commercial Pt/C,respectively.It is worth noting that the PtZn@NC showed excel Ient stability in oxygen reducti on reacti on(ORR)with just 1 mV of the Ev2 loss after 5,000 cycles,which is superior to that of most reported PtM catalysts(especially those disordered solid solutions).Furthermore,such N-doped carb on shell encapsulated PtZn intermetallic NPs showed significa ntly enha need performances towards the anodic oxidation reaction of organic small molecules(such as methanol and formic acid).The synergistic effects of the N doped carbon encapsulation structure and intermetallic NPs are responsible for outstanding performances of the catalysts.This work provides us a new engineering strategy to acquire highly active and stable multifunctional catalysts for PEMFCs.展开更多
Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environmen...Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation.Although many efforts have been developed to avoid their oxidation,whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned.In order to explore the effect of partial surface oxidation of iron on its properties,the designed yolk–shelled(Fe/FeO_(x))@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe_(2)O_(3)ellipsoids.The performance enhancement mechanisms of Fe/FeO_(x)heterointerfaces were also elaborated.It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss,but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability.Meanwhile,the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves.Compared to Fe@C composite,the effective absorption(reflection loss(RL)<−10 dB)bandwidth of the optimized(Fe/FeO_(x))@C-2 increases from 5.7 to 7.3 GHz(10.7–18.0 GHz)at a same matching thickness of 2 mm,which can completely cover Ku-band.This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.展开更多
The synthesis of nanocrystals(NCs)with defined morphology and surface structure provides an effective way to investigate the structure-activity relationship of nanocatalytsts,and it will facilitate the design of nanoc...The synthesis of nanocrystals(NCs)with defined morphology and surface structure provides an effective way to investigate the structure-activity relationship of nanocatalytsts,and it will facilitate the design of nanocatalysts with excellent catalytic performance.In this paper,we developed a facile method to synthesize PdH0.43 NCs with the shape of cube,octahedron and rhombic dodecahedron(RD),whose surface facets are{100},{111}and{110},respectively.The asprepared PdH0.43 NCs are highly stable and exhibit enhanced catalytic activity and extremely low overpotential towards electro-oxidation of formic acid compared with the commercial Pd black and three types of Pd NCs.The specific activity of the cubic PdH0.43 NCs is more than five times that of the commercial Pd black and two times that of the cubic Pd NCs.Among the three types of PdH0.43 NCs with different surface structure,the activity order is followed by PdH0.43{100}>PdH0.43{111}>PdH0.43{110}.展开更多
In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal...In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal facets,while less attention has been paid to its effect on the growth kinetics.In this paper,using the growth of Au-Pd alloy nanocrystals as an example,we demonstrate that different concentration of surfactant hexadecyltrimethyl ammonium chloride(CTAC)may cause the different packing density of CTA+bilayers on different sites(face,edge or vertex)of crystallite surface,which would change the crystal growth kinetics and result in preferential crystal growth along the edge or vertex of crystallites.The unique shape evolution from trisoctahedron to excavated rhombic dodecahedron and multipod structure for Au-Pd alloy nanocrystals was successfully achieved by simply adjusting the concentration of CTAC.These results help to understand the effect of surfactants on the shape evolution of nanocrystals and open up avenues to the rational synthesis of nanocrystals with the thermodynamically unfavorable morphologies.展开更多
Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-band...Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented.展开更多
Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures. Despite successful instances through trial and error were reported, the way for second metal depositing on the see...Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures. Despite successful instances through trial and error were reported, the way for second metal depositing on the seed. namely whether the symmetry of resulted nano-heterostructure follows the original crystal symmetry of seed metal, remains an unpredictable issue to date. In this work, we propose that the ther- modynamic factor, i.e., the difference of equilibrium electrochemical potentials (corresponding to their Fermi levels) of two metals in the growth solution, plays a key role for the symmetry breaking of bimetal nano-heterostructures during the seed-mediated growth. As a proof-of-principle experiment, by revers- ing the relative position of Fermi levels of the Pd nanocube seeds and the second metal Au with changing the concentration of reductant (L-ascorbic acid) in the growth solution, the structure of as-prepared prod- ucts successfully evolved from centrosymmetric Pd@Au core-shell trisoctabedra to asymmetric Pd-Au hetero-dimers. The idea was further demonstrated by the growth of Ag on the Pd seeds. The present work intends to reveal the origin of symmetry breaking in the seed-mediated growth of nano-heterostructures from the viewpoint of thermodynamics, and these new insights will in turn help to achieve rational con- struction of bimetal nano-heterostructures with soecific functions.展开更多
基金the financial support from the Ministry of Science and Technology of China (Nos.2016YFA0204100 and 2016YFA0200200)the National Natural Science Foundation of China (Nos.21890753, 21573220 and 21802124)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No.QYZDB-SSW-JSC020)the DNL Cooperation Fund, CAS (No.DNL180201)the financial and technique supports from the Westlake Education Foundation, Supercomputing Systems in the Information Technology Center of Westlake University
文摘The catalytic conversion of ethane to high value-added chemicals is significantly important for utilization of hydrocarbon resources.However, it is a great challenge due to the typically required high temperature(> 400 ℃) conditions.Herein, a highly active catalytic conversion process of ethane at room temperature(25 ℃) is reported on single iron atoms confined in graphene via the porphyrin-like N4-coordination structures.Combining with the operando time of flight mass spectrometer and density functional theory calculations, the reaction is identified as a radical mechanism, in which the C–H bonds of the same C atom are preferentially and sequentially activated, generating the value-added C2 chemicals, simultaneously avoiding the over-oxidation of the products to CO2.The in-situ formed O–FeN4–O structure at the single iron atom serves as the active center for the reaction and facilitates the formation of ethyl radicals.This work deepens the understanding of alkane C–H activation on the FeN4 center and provides the reference in development of efficient catalyst for selective oxidation of light alkane.
文摘The catalytic activity of noble-metal nanocrystals is mainly determined by their sizes and the facets exposed on the surface. For single crystals, it has been demonstrated that the Pd(100) surface is catalytically more active than both Pd(110) and Pd(111) surfaces for the CO oxidation reaction. Here we report the synthesis of Pd nanocrystals enclosed by {100} facets with controllable sizes in the range of 6-18 nm by manipulating the rate of reduction of the precursor. UV-vis spectroscopy studies indicate that the rate of reduction of Na2PdC14 can be controlled by adjusting the concentrations of Br- and C1- ions added to the reaction mixture. Pd nanocrystals with different sizes were immobilized on ZnO nanowires and evaluated as catalysts for CO oxidation. We found that the activity of this catalytic system for CO oxidation showed a strong dependence on the nanocrystal size. When the size of the Pd nanocrystals was reduced from 18 nm to 6 nm, the maximum conversion rate was significantly enhanced by a factor of -10 and the corresponding maximum conversion temperature was lowered by -80℃.
基金This work was supported by the National Basic Research Program of China (Nos. 2011CBA00508 and 2015CB932301), the National Natural Science Foundation of China (Nos. 21131005, 21333008, and J1310024), and the Natural Science Foundation of Fujian Province of China (No. 2014J01058).
文摘Rh is an important catalyst that is widely used in a variety of organic reactions. In recent years, many efforts have focused on improving its catalytic efficiency by fabricating catalyst nanoparticles with controlled size and morphology. However, the frequently employed synthesis route using organic compounds either as the reaction medium or capping agent often results in residual molecules on the catalyst surface, which in turn drastically diminishes the catalytic performance. Herein, we report a facile, aqueous, surfactant-free synthesis of a novel Rh flower- like structure obtained via hydrothermal reduction of Rh(acac)3 by formaldehyde. The unique Rh nanoflowers were constructed from ultrathin nanosheets, whose basal surfaces comprised {111} facets with an average thickness of -1.1 nm. The specific surface area measured by CO stripping was 79.3 m2-g-1, which was much larger than that of commercial Rh black. More importantly, the Rh nanoflower catalyst exhibited excellent catalytic performance in the catalytic hydrogenation of phenol and cyclohexene, in contrast to the commercial Rh black and polyvinyl pyrrolidone (PVP)-capped Rh nanosheets exposed by similar {111} basal surfaces.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0206500 and 2017YFA0206801)the National Basic Research Program of China(No.2015CB932301)the National Natural Science Foundation of China(Nos.21671163,21721001,and J1310024).
文摘Recently,metal-organic framework(MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-basedartificial enzymes are attracting increasing attention due to their high catalytic efficiency and promising application in sensing.Simpleand controllable integration of enzymes or nanozymes within MOFs is crucial for achieving efficient cascade catalysis and high stability.Here,we report a facile electrochemical assisted biomimetic mineralization strategy to prepare an artificial multienzyme system for efficient electrochemicaldetection of biomolecules.By using the G0x@Cu-MOF/copper foam(G0x@Cu-MOF/CF)architecture as a proof of concept,efficientenzyme immobilization and cascade catalysis were achieved by in situ encapsulation of glucose oxidase(GOx)within MOFs layer grown onthree-dimensional(3D)porous conducting CF via a facile one-step electrochemical assisted biomimetic mineralization strategy.Due to thebio-electrocatalytic cascade reaction mechanism,this well-designed GOx@Cu-MOF modified electrode exhibited superior catalytic activityand thermal stability for glucose sensing.Notably,the activity of GOx@Cu-MOF/CF still remained at ca.80%after being incubated at 80℃.In sharp contrast,the activity of the unprotected electrode was reduced to the original 10%after the same treatment.The design strategypresented here may be useful in fabricating highly stable enzyme@MOF composites applied for efficient photothermal therapy and otherplatform under high temperature.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0206500 and 2017YFA0206801)the National Basic Research Program of China(No.2015CB932301)the National Natural Science Foundation of China(Nos.21671163 and 21721001).
文摘The high cost and poor durability of Pt nanoparticles(NPs)have always been great challenges to the commercialization of proton exchange membrane fuel cells(PEMFCs).Pt-based intermetallic NPs with a highly ordered structure are considered as promising catalysts for PEMFCs due to their high catalytic activity and stability.Here,we reported a facile method to synthesize N-doped carbon encapsulated PtZn intermetallic(PtZn@NC)NPs via the pyrolysis of Pt@Zn-based zeolitic imidazolate framework-8(Pt@ZIF-8)composites.The catalyst obtained at 800℃(10%-PtZn@NC-800)was found to exhibit a half-wave potential(Ev2)up to 0.912 V versus reversible hydrogen electrode(RHE)for the cathodic oxygen reduction reaction in an acidic medium,which shifted by 26 mV positively compared to the benchmark Pt/C catalyst.Besides,the mass activity and specific activity of 10%-PtZn@NC-800 at 0.9 V versus RHE were nearly 3 and 5 times as great as that of commercial Pt/C,respectively.It is worth noting that the PtZn@NC showed excel Ient stability in oxygen reducti on reacti on(ORR)with just 1 mV of the Ev2 loss after 5,000 cycles,which is superior to that of most reported PtM catalysts(especially those disordered solid solutions).Furthermore,such N-doped carb on shell encapsulated PtZn intermetallic NPs showed significa ntly enha need performances towards the anodic oxidation reaction of organic small molecules(such as methanol and formic acid).The synergistic effects of the N doped carbon encapsulation structure and intermetallic NPs are responsible for outstanding performances of the catalysts.This work provides us a new engineering strategy to acquire highly active and stable multifunctional catalysts for PEMFCs.
基金supported by the National Natural Science Foundation of China(Nos.21771151 and 21931009)the Natural Science Foundation of Fujian Province of China(No.2022J01042).
文摘Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation.Although many efforts have been developed to avoid their oxidation,whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned.In order to explore the effect of partial surface oxidation of iron on its properties,the designed yolk–shelled(Fe/FeO_(x))@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe_(2)O_(3)ellipsoids.The performance enhancement mechanisms of Fe/FeO_(x)heterointerfaces were also elaborated.It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss,but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability.Meanwhile,the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves.Compared to Fe@C composite,the effective absorption(reflection loss(RL)<−10 dB)bandwidth of the optimized(Fe/FeO_(x))@C-2 increases from 5.7 to 7.3 GHz(10.7–18.0 GHz)at a same matching thickness of 2 mm,which can completely cover Ku-band.This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.
基金supported by the National Natural Science Foundation of China (21771153, 21721001, and 21773190)the Natural Science Foundation of Fujian Province (2018J01015)
文摘The synthesis of nanocrystals(NCs)with defined morphology and surface structure provides an effective way to investigate the structure-activity relationship of nanocatalytsts,and it will facilitate the design of nanocatalysts with excellent catalytic performance.In this paper,we developed a facile method to synthesize PdH0.43 NCs with the shape of cube,octahedron and rhombic dodecahedron(RD),whose surface facets are{100},{111}and{110},respectively.The asprepared PdH0.43 NCs are highly stable and exhibit enhanced catalytic activity and extremely low overpotential towards electro-oxidation of formic acid compared with the commercial Pd black and three types of Pd NCs.The specific activity of the cubic PdH0.43 NCs is more than five times that of the commercial Pd black and two times that of the cubic Pd NCs.Among the three types of PdH0.43 NCs with different surface structure,the activity order is followed by PdH0.43{100}>PdH0.43{111}>PdH0.43{110}.
基金supported by the National Basic Research Program of China (2015CB932301)the National Key Research and Development Program of China (2017YFA0206801)the National Natural Science Foundation of China (21333008, 21773190 and J1310024)
文摘In wet chemical syntheses of noble metal nanocrystals,surfactants play crucial roles in regulating their morphology.To date,more attention has been paid to the effect of the surfactant on the surface energy of crystal facets,while less attention has been paid to its effect on the growth kinetics.In this paper,using the growth of Au-Pd alloy nanocrystals as an example,we demonstrate that different concentration of surfactant hexadecyltrimethyl ammonium chloride(CTAC)may cause the different packing density of CTA+bilayers on different sites(face,edge or vertex)of crystallite surface,which would change the crystal growth kinetics and result in preferential crystal growth along the edge or vertex of crystallites.The unique shape evolution from trisoctahedron to excavated rhombic dodecahedron and multipod structure for Au-Pd alloy nanocrystals was successfully achieved by simply adjusting the concentration of CTAC.These results help to understand the effect of surfactants on the shape evolution of nanocrystals and open up avenues to the rational synthesis of nanocrystals with the thermodynamically unfavorable morphologies.
基金supported by the National Natural Science Foundation of China(Nos.21771151 and 21931009).
文摘Microwave absorbing materials(MAMs)are playing an increasingly essential role in the development of wireless communications,high-power electronic devices,and advanced target detection technology.MAMs with a broad-bandwidth response are particularly important in the area of communication security,radiation prevention,electronic reliability,and military stealth.Although considerable progress has been made in the design and preparation of MAMs with a broad-bandwidth response,a number of challenges still remain,and the structure–function relationship of MAMs is still far from being completely understood.Herein,the advances in the design and research of MAMs with a broad-bandwidth response are outlined.The main strategies for expanding the effective absorption bandwidth of MAMs are comprehensively summarized considering three perspectives:the chemical combination strategy,morphological control strategy,and macrostructure control strategy.Several important results as well as design principles and absorption mechanisms are highlighted.A coherent explanation detailing the influence of the chemical composition and structure of various materials on the microwave absorption properties of MAMs is provided.The main challenges,new opportunities,and future perspectives in this promising field are also presented.
基金supported by the National Basic Research Program of China(2015CB93230)the National Key Research and Development Program of China(2017YFA0206801)+1 种基金the National Natural Science Foundation of China(21333008,21671163,21721001,and 21773190)the Fundamental Research Funds for the Central Universities(20720160026)
文摘Seed-mediated growth is the most general way to controllably synthesize bimetal nano-heterostructures. Despite successful instances through trial and error were reported, the way for second metal depositing on the seed. namely whether the symmetry of resulted nano-heterostructure follows the original crystal symmetry of seed metal, remains an unpredictable issue to date. In this work, we propose that the ther- modynamic factor, i.e., the difference of equilibrium electrochemical potentials (corresponding to their Fermi levels) of two metals in the growth solution, plays a key role for the symmetry breaking of bimetal nano-heterostructures during the seed-mediated growth. As a proof-of-principle experiment, by revers- ing the relative position of Fermi levels of the Pd nanocube seeds and the second metal Au with changing the concentration of reductant (L-ascorbic acid) in the growth solution, the structure of as-prepared prod- ucts successfully evolved from centrosymmetric Pd@Au core-shell trisoctabedra to asymmetric Pd-Au hetero-dimers. The idea was further demonstrated by the growth of Ag on the Pd seeds. The present work intends to reveal the origin of symmetry breaking in the seed-mediated growth of nano-heterostructures from the viewpoint of thermodynamics, and these new insights will in turn help to achieve rational con- struction of bimetal nano-heterostructures with soecific functions.