期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
侧链含吡啶聚三噻吩/rGO/Pd复合材料的制备及甲醇电催化氧化性能
1
作者 阿布都克尤木·阿布都热西提 王景阳 +7 位作者 艾合买提·沙塔尔 姚雪 如仙古丽·加玛力 宁可 张翰林 胡立坤 牛朝阳 周学广 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2024年第9期1-8,共8页
以D-A结构的3-吡啶基-2,5-二噻基噻吩为单体,调节单体与还原氧化石墨烯的配比,通过原位溶液聚合修饰还原氧化石墨烯(rGO),制备了催化剂载体polymer/rGO_(80%)和polymer/rGO_(50%)复合物。然后将Pd纳米粒子负载到rGO,polymer/rGO_(80%)和... 以D-A结构的3-吡啶基-2,5-二噻基噻吩为单体,调节单体与还原氧化石墨烯的配比,通过原位溶液聚合修饰还原氧化石墨烯(rGO),制备了催化剂载体polymer/rGO_(80%)和polymer/rGO_(50%)复合物。然后将Pd纳米粒子负载到rGO,polymer/rGO_(80%)和polymer/rGO_(50%)上,制备了rGO/Pd,polymer/rGO_(80%)/Pd和polymer/rGO_(50%)/Pd电催化剂。通过红外光谱、扫描电镜、透射电镜及电感耦合等离子体发射光谱对电催化剂进行表征,并采用循环伏安和计时电流等电化学测试方法对电催化剂的甲醇电催化氧化性能进行了研究。结果表明,rGO/Pd,polymer/rGO_(80%)/Pd和polymer/rGO_(50%)/Pd在0.5 mol/L KOH溶液中的电化学活性表面积分别为195.2 cm^(2)/mg,280.1 cm^(2)/mg和428.1 cm^(2)/mg;rGO/Pd,polymer/rGO_(80%)/Pd和polymer/rGO_(50%)/Pd在0.5 mol/L KOH+1 mol/L CH3OH体系中甲醇电催化氧化峰电流密度分别为235.31 mA/mg,783.83 mA/mg和1146.36 mA/mg,与rGO/Pd相比,polymer/rGO_(80%)/Pd和polymer/rGO_(50%)/Pd的电催化活性分别为rGO/Pd的3.3倍和4.9倍,表明聚合物在复合物中的最佳质量分数为50%。侧链含吡啶聚三噻吩修饰rGO,可以增强rGO/Pd电催化剂的电催化性能和电催化稳定性。 展开更多
关键词 聚三噻吩衍生物 D-A结构 甲醇电催化氧化 Pd基电催化剂
下载PDF
High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO_(2)/N_(2) and CH_(4)/N_(2) separation
2
作者 Siang Chen Wenling Wu +4 位作者 zhaoyang niu Deqi Kong Wenbin Li Zhongli Tang Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期282-297,共16页
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In... Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane. 展开更多
关键词 Activated carbon Carbon molecular sieve Adsorbent evaluation Adsorption equilibrium and kinetics Heat of adsorption SELECTIVITY
下载PDF
Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon 被引量:2
3
作者 Yadong Li Yuanhui Shen +4 位作者 zhaoyang niu Junpeng Tian Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期346-360,共15页
In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery ... In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery were studied systematically with activated carbon adsorbent.The adsorption and desorption behaviors of benzene on activated carbon in above two processes were investigated systematically.Effects of operating parameters on process performances were further analyzed,including as regeneration temperature,purging feed ratio and hot–cold purging ratio.The results showed that the increase of hot–cold purging ratio(HP/CP)could obtain the same regeneration effect as the increase of desorption temperature.Increasing the feed purge ratio without increasing the hot–cold purging ratio is not conducive to bed regeneration,because a large number of cold purge gases cannot utilize the residual heat of temperature wave,thus reducing the desorption effect of the cooling step on the bed.In addition,the vacuum step can enhance the regeneration ability of hot nitrogen to the bed at the same regeneration temperature,making the bed regeneration of TVSA process more thorough.Temperature in the middle and lower part of the bed in TVSA process was higher and the regeneration was more thorough.In conclusion,TVSA has more obvious advantages than TSA in terms of energy consumption,hot or cold purge volume and bed regeneration. 展开更多
关键词 VOCS TSA TVSA Activated carbon BENZENE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部