期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone 被引量:1
1
作者 Jianmei JIANG Lin ZHAO zhe zhai 《Frontiers of Earth Science》 SCIE CAS CSCD 2016年第3期513-526,共14页
The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continu- ously measures temperature and water content of soil pr... The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continu- ously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached l0 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018℃, 0.909℃, and 0.255℃, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5 W-m 2 at 7:30 and -234.6 W.m2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport. 展开更多
关键词 heat transport heat flux soil temperature water content shallow groundwater table
原文传递
Experimental study of the effect of shallow groundwater table on soil thermal properties
2
作者 Jianmei JIANG Lin ZHAO +1 位作者 Yijian ZENG zhe zhai 《Frontiers of Earth Science》 SCIE CAS CSCD 2016年第1期29-37,共9页
In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables r... In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m^3·m^-3 in Experiment II to 0.01 m^3·m^-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0℃ to 28.8℃. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3 W.cm^-1·K^-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82 W.cm^-1·K^-1, 2.15 W.cm^-1·K^-1, and 2.21 W. cm^-1·K^-1, which were always higher than that in Experiment III. 展开更多
关键词 soil temperature thermal property ground-water table depth EVAPORATION
原文传递
Symplectic Analysis on Coupling Behaviors of Spatial Fiexible Damping Beam
3
作者 Weipeng Hu Xiaojian Xi +3 位作者 zhe zhai Pengfei Cui Fan Zhang Zichen Deng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期541-551,共11页
Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulatio... Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulation speed still needs to be improved.In this paper,the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables,and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly.Compared with the simulation speed of the complex structure-preserving method,the simulation speed of the symplectic Runge–Kutta method is faster,which benefits from the pretreatment step.The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples.From the numerical results about the effect of the initial radial velocity,it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly.In addition,the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies. 展开更多
关键词 Symplectic Runge-Kutta method Spatial fexible damping beam Orbit-attitudevibration coupled dynamic behavior Structure-preserving
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部