The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continu- ously measures temperature and water content of soil pr...The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continu- ously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached l0 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018℃, 0.909℃, and 0.255℃, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5 W-m 2 at 7:30 and -234.6 W.m2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.展开更多
In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables r...In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m^3·m^-3 in Experiment II to 0.01 m^3·m^-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0℃ to 28.8℃. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3 W.cm^-1·K^-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82 W.cm^-1·K^-1, 2.15 W.cm^-1·K^-1, and 2.21 W. cm^-1·K^-1, which were always higher than that in Experiment III.展开更多
Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulatio...Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulation speed still needs to be improved.In this paper,the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables,and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly.Compared with the simulation speed of the complex structure-preserving method,the simulation speed of the symplectic Runge–Kutta method is faster,which benefits from the pretreatment step.The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples.From the numerical results about the effect of the initial radial velocity,it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly.In addition,the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies.展开更多
文摘The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continu- ously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached l0 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018℃, 0.909℃, and 0.255℃, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5 W-m 2 at 7:30 and -234.6 W.m2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.
文摘In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m^3·m^-3 in Experiment II to 0.01 m^3·m^-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0℃ to 28.8℃. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3 W.cm^-1·K^-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82 W.cm^-1·K^-1, 2.15 W.cm^-1·K^-1, and 2.21 W. cm^-1·K^-1, which were always higher than that in Experiment III.
基金supported by the National Natural Science Foundation of China(12172281,11972284 and 11872303)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)+1 种基金Foundation Strengthening Programme Technical Area Fund(2021-JCJQ-JJ-0565)Fund of the Youth Innovation Team of Shaanxi Universities and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ19103).
文摘Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulation speed still needs to be improved.In this paper,the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables,and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly.Compared with the simulation speed of the complex structure-preserving method,the simulation speed of the symplectic Runge–Kutta method is faster,which benefits from the pretreatment step.The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples.From the numerical results about the effect of the initial radial velocity,it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly.In addition,the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies.