期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Nitrogen-doped ordered mesoporous carbon:Effect of carbon precursor on oxygen reduction reactions 被引量:5
1
作者 Xiao-hua Li Kai Wan +3 位作者 Quan-bing Liu Jin-hua Piao Yu-ying Zheng zhen-xing liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第9期1562-1568,共7页
Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the ... Aniline,pyrrole and phenanthroline,which have different nitrogen compositions,are used as carbon precursors to synthesize nitrogen-doped ordered mesoporous carbons(NOMCs) by the nanocasting method.The effect of the precursor on the resultant NOMC is extensively investigated by nitrogen adsorption-desorption measurements,scanning electron microscopy,X-ray photoelectron spectroscopy(XPS),cyclic voltammetry and rotating ring-disk electrode measurements.Salient findings are as follows.First,the precursor has a significant influence on the specific surface area and textural properties.The NOMC materials derived from pyrrole(C-PY-900:765 m^2/) and phenanthroline(C-Phen-900:746 m^2/) exhibit higher specific surface areas than the aniline analog(C-PA-900:569 m^2/).Second,the XPS results indicate that the total nitrogen content(ca.3.1–3.3 at%) is similar for the three carbon sources,except for a slight difference in the nitrogen configuration.Furthermore,the content of the nitrogen-activated carbon atoms is found to closely depend on the precursor,which is the highest for the phenanthroline-derived carbon.Third,the electrochemical results reveal that the electrocatalytic activity follows in the order C-PA-900 C-PY-900 C-Phen-900,confirming that the nitrogen-activated carbon atoms are the active sites for the oxygen reduction reaction(ORR).In summary,the precursor has considerable influence on the composition and textural properties of the NOMC materials,of which the ORR electrocatalytic activity can be enhanced through optimization of the NOMCs. 展开更多
关键词 ELECTROCATALYSIS Fuel cell Nitrogen-doped ordered mesoporous carbon Oxygen reduction reaction PRECURSOR
下载PDF
Oxygen reduction reaction on single Pt nanoparticle 被引量:3
2
作者 Zhi-Peng Xiang Ai-Dong Tan +2 位作者 Zhi-Yong Fu Jin-Hua Piao zhen-xing liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期323-326,共4页
Nanocollision electrochemistry is employed to evaluate the ORR’s activity of one single Pt nanoparticle,the effect of the size and ligand is investigated.The size-normalized activity of the Pt nanoparticle of 4 nm is... Nanocollision electrochemistry is employed to evaluate the ORR’s activity of one single Pt nanoparticle,the effect of the size and ligand is investigated.The size-normalized activity of the Pt nanoparticle of 4 nm is two times higher than that of 25 nm,confirming that the intrinsic activity does depend on the size of the nanoparticles.It is further found that the adsorbed ligand does yield effect on electrocatalysis,and the adsorption strength follows the order of PVP>CTAB>citrate.This work is of significance to understand the nature of the ORR’s electrocatalysis at the level of an individual entity,which makes the structure-activity correlation in a more reliable way. 展开更多
关键词 Ligand effect Nano-collision electrochemistry Oxygen reduction reaction Single Pt nanoparticle
下载PDF
Facile synthesis strategy of NicorePtshell electrocatalyst for oxygen reduction reaction 被引量:1
3
作者 Yi Wang Gui-Fa Long +2 位作者 Jin-Hua Piao Zhi-Yong Fu zhen-xing liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期192-196,共5页
Polymer electrolyte membrane fuel cells(PEMFCs), as an energy conversion technology, have attracted extensive attention due to their high conversion efficiency, low emission, high energy density,and fast fuel charging... Polymer electrolyte membrane fuel cells(PEMFCs), as an energy conversion technology, have attracted extensive attention due to their high conversion efficiency, low emission, high energy density,and fast fuel charging [1,2]. Pt-based catalysts have been acknowledged to be the most effective catalyst for the oxygen reduction reaction(ORR) [3–5]. However, both the source scarcity and high cost of Pt severely hinder the commercial application of the PEMFCs [1,6,7]. 展开更多
关键词 CORE-SHELL structure SPONTANEOUS DISPLACEMENT REACTION OXYGEN reduction REACTION Fuel cell
下载PDF
Ultralow platinum-loading PtPdRu@PtRuIr/C catalyst with excellent CO tolerance and high performance for the methanol oxidation reaction 被引量:3
4
作者 Yan-Ni Wu Shi-Jun Liao +2 位作者 Hai-Fu Guo Xiang-Ying Hao zhen-xing liang 《Rare Metals》 SCIE EI CAS CSCD 2014年第3期337-342,共6页
Carbon-supported PtPdRuIr, Pd@PtRuIr, PtPd@PtRuIr, and PtPdRu@PtRuIr catalysts were prepared by a colloidal method and their catalytic activities to the methanol oxidation reaction in the acidic media were extensively... Carbon-supported PtPdRuIr, Pd@PtRuIr, PtPd@PtRuIr, and PtPdRu@PtRuIr catalysts were prepared by a colloidal method and their catalytic activities to the methanol oxidation reaction in the acidic media were extensively investigated at room temperature. The catalysts were characterized by transmission electron microscopy and X-ray diffraction techniques, and their electrochemical behavior was evaluated by the cyclic voltammetry. The PtPdRu@PtRuIr/C catalyst is found to yield much higher electrocatalytic activity than the other ones and the commercial catalyst. For example, the Pt metal mass-specific activity of this PtPdRu@PtRuIr/C(Pt content 10 wt%,1.7 mAácm-2ámg-1) electrocatalyst is *3-fold higher than that of the commercial JM 40 % Pt/C(0.6 mAácm-2ámg-1)electrocatalysts, and the If/Ib ratio of PtPdRu@PtRuIr/C is1.6, which is higher than that of the JM 40 % Pt/C(0.9). The improvement may result from the high dispersion of the active metal catalyst and the synergistic effect between the PtRuIr and PtPdRu layers. It is thus concluded that the pseudo-core-shell structure could significantly improve the methanol electro-oxidation activity and CO tolerance of the electrocatalyst. 展开更多
关键词 CATALYST Colloidal approach Methanoloxidation PtPdRu@PtRuIr/C
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部