AIM:To investigate whether uncoupling protein 2(UCP2) affects oleic acid-induced secretion of glucagonlike peptide-1(GLP-1) in L-cells.METHODS:mRNA and protein expression of UCP2 were analyzed in human NCI-H716 cells,...AIM:To investigate whether uncoupling protein 2(UCP2) affects oleic acid-induced secretion of glucagonlike peptide-1(GLP-1) in L-cells.METHODS:mRNA and protein expression of UCP2 were analyzed in human NCI-H716 cells,which serve as a model for enteroendocrine L-cells,by quantitative reverse transcription-polymerase chain reaction and Western blotting before and after treatment with oleic acid.Localization of UCP2 and GLP-1 in NCI-H716 cells was assessed by immunofluorescence labeling.NCI-H716 cells were transiently transfected with a small interfering RNA(siRNA) that targets UCP2(siUCP2) or with a nonspecific siRNA using Lipofectamine 2000.The concentrations of bioactive GLP-1 in the medium were measured by enzyme linked immunosorbent assay.RESULTS:Both GLP-1 and UCP2 granules were expressed mainly in the cytoplasm of NCI-H716 cells.NCI-H716 cells that secreted GLP-1 also expressed UCP2.Time-course experiments revealed that release of GLP-1 from NCI-H716 cells into the medium reached a maximum at 120 min and remained stable until at least 180 min after treatment with oleic acid(the level of GLP-1 increased about 2.3-fold as compared with the level of GLP-1 in the control cells,P < 0.05).In an experiment to determine dose dependence,stimulation of NCI-H716 cells with ≤ 8 mmol oleic acid led to a concentration-dependent release of GLP-1 into the medium;10 mmol oleic acid diminished the release of GLP-1.Furthermore,GLP-1 secretion induced by oleic acid from NCI-H716 cells that were transfected with siUCP2 decreased to 41.8%,as compared with NCI-H716 cells that were transfected with a non-specific siRNA(P < 0.01).CONCLUSION:UCP2 affected GLP-1 secretion induced by oleic acid.UCP2 plays an important role in L-cell secretion that is induced by free fatty acids.展开更多
Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric...Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric microscopy(SEM), X-ray diffractometry(XRD) and Auger electron spectroscopy(AES). Fretting wear tests of uranium and Ti/TiN multilayer film were carried out using pin-on-disc configuration. The fretting tests of uranium and Ti/TiN multilayer film were carried out under normal load of 20 N and various displacement amplitudes ranging from 5 to 100 μm. With the increase of the displacement amplitude, the fretting changed from partial slip regime(PSR) to slip regime(SR). The coefficient of friction(COF) increased with the increase of displacement amplitude. The results indicated that the displacement amplitude had a strong effect on fretting wear behavior of the film. The damage of the film was very slight when the displacement amplitude was below 20 μm. The observations indicated that the delamination was the main wear mechanism of Ti/TiN multilayer film in PSR. The main wear mechanism of Ti/TiN multilayer film in SR was delamination and abrasive wear.展开更多
BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diar...BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.展开更多
The intestinal mucosa is a highly compartmentalized structure that forms a directbarrier between the host intestine and the environment, and its dysfunction couldresult in a serious disease. As T cells, which are impo...The intestinal mucosa is a highly compartmentalized structure that forms a directbarrier between the host intestine and the environment, and its dysfunction couldresult in a serious disease. As T cells, which are important components of themucosal immune system, interact with gut microbiota and maintain intestinalhomeostasis, they may be involved in the process of intestinal barrier dysfunction.P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effectsof extracellular adenosine triphosphate and is expressed by most innate or adaptiveimmune cells, including T cells. Current evidence has demonstrated thatP2X7R is involved in inflammation and mediates the survival and differentiationof T lymphocytes, indicating its potential role in the regulation of T cell function.In this review, we summarize the available research about the regulatory role andmechanism of P2X7R on the intestinal mucosa-derived T cells in the setting ofintestinal barrier dysfunction.展开更多
BACKGROUND: In adults, vitamin K-dependent coagulation factor deficiency (VKCFD) increases in the recent years. We treated a VKCFD patient with subarachnoid hemorrhage, with favorable outcomes.METHODS: A 19-year-o...BACKGROUND: In adults, vitamin K-dependent coagulation factor deficiency (VKCFD) increases in the recent years. We treated a VKCFD patient with subarachnoid hemorrhage, with favorable outcomes.METHODS: A 19-year-old male student with VKCFD was treated at our hospital. The initial treatment was injection of a large dose of vitamin K and fresh plasma, and then with oral high dose of vitamin K4.RESULTS: At 4 weeks after admission, the focus of hemorrhage subsided, neurological examination was normal, and the patient was discharged.CONCLUSIONS: VKCFD is rare and its diagnosis should be based on the history of the patient and the results of laboratory examinations. A large dose of vitamin K is the fi rst choice of treatment.展开更多
In the present work,316 L stainless steel specimens are fabricated by selective laser melting(SLM)via optimized laser process parameters.The effects of two extrinsic factors,i.e.,strain rate and annealing temperature,...In the present work,316 L stainless steel specimens are fabricated by selective laser melting(SLM)via optimized laser process parameters.The effects of two extrinsic factors,i.e.,strain rate and annealing temperature,on the mechanical performance of SLM-processed parts are studied.The two intrinsic factors,namely strain rate sensitivity m and work hardening exponent n,which control the tensile properties of the as-built samples,are quantified.Micro structure characterizations show that cellular structure and crystalline grain exhibit apparently different thermal stability at 873 K.Tensile testing reveals that the yield strength decreases from 584±16 MPa to 323±2 MPa,while the elongation to failure increases from(46±1)%to(65±2)%when annealing temperature varies from 298 K to 1328 K.The n value increases from 0.13 to 0.33 with the increase in annealing temperature.Due to the presence of fine cellular structures and high relative density achieved in as-printed 316 L samples,a strong dependence between tensile yield strength and strain rate is observed.In addition,the strain rate sensitivity of the SLM-produced 316 L part(m=0.017)is much larger than that of conventional coarse-grained part(m=0.006),whereas the n value increases slightly from 0.097 to 0.14 with increasing strain rate.展开更多
Previous studies have revealed that laser power and energy density are significant factors affecting the quality of parts manufactured by selective laser melting(SLM).The normalized equivalent density E_(0)^(*) and di...Previous studies have revealed that laser power and energy density are significant factors affecting the quality of parts manufactured by selective laser melting(SLM).The normalized equivalent density E_(0)^(*) and dimensionless laser power q^(*),which can be regarded as a progress on the understanding of the corresponding dimensional quantities,are adopted in this study to examine the defects,melt pool shape,and primary dendrite spacing of the SLM-manufactured 316 L stainless steel,because it reflects the combined effect of process parameters and material features.It is found that the number of large defects decreases with increasing E_(0)^(*) due to enough heat input during the SLM process,but it will show an increasing trend when excessive heat input(i.e.,utilizing a high E_(0)^(*))is imported into the powder bed.The q^(*) plays an important role in controlling maximum temperature rising in the SLM process,and in turn,it affects the number of large defects.A large q^(*) value results in a low value of absolute frequency of large defects,whereas a maximum value of absolute frequency of large defects is achieved at a low q^(*) even if E_(0)^(*) is very high.The density of the built parts is greater at a higher q^(*) when E_(0)^(*)remains constant.Increasing the melt pool depth at relatively low value of E_(0)^(*) enhances the relative density of the parts.A narrow,deep melt pool can be easily generated at a high q^(*) when E_(0)^(*) is sumciently high,but it may increase melt pool instability and cause keyhole defects.It is revealed that a low E_(0)^(*) can lead to a high cooling rate,which results in a refined primary dendrite spacing.Relatively low E_(0)^(*) is emphasized in selecting the process parameters for the tensile test sample fabrication.It shows that excellent tensile properties,namely ultimate tensile strength,yield strength,and elongation to failure of 773 MPa,584 MPa,and 46%,respectively,can be achieved at a relatively low E_(0)^(*) without heat treatment.展开更多
In the Original Publication of the article,some reference numbers in the Figs.1,5,14 and Appendixes B,C,D are mismatched.The corrected reference numbers in the figures and appendixes are given below.
基金Supported by Grant from the National Natural Science Foundation of China,No. 30771039
文摘AIM:To investigate whether uncoupling protein 2(UCP2) affects oleic acid-induced secretion of glucagonlike peptide-1(GLP-1) in L-cells.METHODS:mRNA and protein expression of UCP2 were analyzed in human NCI-H716 cells,which serve as a model for enteroendocrine L-cells,by quantitative reverse transcription-polymerase chain reaction and Western blotting before and after treatment with oleic acid.Localization of UCP2 and GLP-1 in NCI-H716 cells was assessed by immunofluorescence labeling.NCI-H716 cells were transiently transfected with a small interfering RNA(siRNA) that targets UCP2(siUCP2) or with a nonspecific siRNA using Lipofectamine 2000.The concentrations of bioactive GLP-1 in the medium were measured by enzyme linked immunosorbent assay.RESULTS:Both GLP-1 and UCP2 granules were expressed mainly in the cytoplasm of NCI-H716 cells.NCI-H716 cells that secreted GLP-1 also expressed UCP2.Time-course experiments revealed that release of GLP-1 from NCI-H716 cells into the medium reached a maximum at 120 min and remained stable until at least 180 min after treatment with oleic acid(the level of GLP-1 increased about 2.3-fold as compared with the level of GLP-1 in the control cells,P < 0.05).In an experiment to determine dose dependence,stimulation of NCI-H716 cells with ≤ 8 mmol oleic acid led to a concentration-dependent release of GLP-1 into the medium;10 mmol oleic acid diminished the release of GLP-1.Furthermore,GLP-1 secretion induced by oleic acid from NCI-H716 cells that were transfected with siUCP2 decreased to 41.8%,as compared with NCI-H716 cells that were transfected with a non-specific siRNA(P < 0.01).CONCLUSION:UCP2 affected GLP-1 secretion induced by oleic acid.UCP2 plays an important role in L-cell secretion that is induced by free fatty acids.
基金Projects(U1530136,51375407) supported by the National Natural Science Foundation of ChinaProject(2017TD0017) supported by the Young Scientific Innovation Team of Science and Technology of Sichuan Province,China
文摘Ti/TiN multilayer film was deposited on uranium surface by arc ion plating technique to improve fretting wear behavior. The morphology, structure and element distribution of the film were measured by scanning electric microscopy(SEM), X-ray diffractometry(XRD) and Auger electron spectroscopy(AES). Fretting wear tests of uranium and Ti/TiN multilayer film were carried out using pin-on-disc configuration. The fretting tests of uranium and Ti/TiN multilayer film were carried out under normal load of 20 N and various displacement amplitudes ranging from 5 to 100 μm. With the increase of the displacement amplitude, the fretting changed from partial slip regime(PSR) to slip regime(SR). The coefficient of friction(COF) increased with the increase of displacement amplitude. The results indicated that the displacement amplitude had a strong effect on fretting wear behavior of the film. The damage of the film was very slight when the displacement amplitude was below 20 μm. The observations indicated that the delamination was the main wear mechanism of Ti/TiN multilayer film in PSR. The main wear mechanism of Ti/TiN multilayer film in SR was delamination and abrasive wear.
基金The Health Commission of Jinshan District,Shanghai,China,No.JSKJ-KTMS-2019-01The Youth Research Foundation of Jinshan Hospital of Fudan University,No.JYQN-JC-202101 and No.JYQN-JC-202216The Reserve Discipline Construction of Jinshan Hospital of Fudan University,No.HBXK-2021-2.
文摘BACKGROUND Serotonin receptor 2B(5-HT2B receptor)plays a critical role in many chronic pain conditions.The possible involvement of the 5-HT2B receptor in the altered gut sensation of irritable bowel syndrome with diarrhea(IBS-D)was investigated in the present study.AIM To investigate the possible involvement of 5-HT2B receptor in the altered gut sensation in rat model and patients with IBS-D.METHODS Rectosigmoid biopsies were collected from 18 patients with IBS-D and 10 patients with irritable bowel syndrome with constipation who fulfilled the Rome IV criteria and 15 healthy controls.The expression level of the 5-HT2B receptor in colon tissue was measured using an enzyme-linked immunosorbent assay and correlated with abdominal pain scores.The IBS-D rat model was induced by intracolonic instillation of acetic acid and wrap restraint.Alterations in visceral sensitivity and 5-HT2B receptor and transient receptor potential vanilloid type 1(TRPV1)expression were examined following 5-HT2B receptor antagonist adminis-tration.Changes in visceral sensitivity after administration of the TRPV1 antago-INTRODUCTION Irritable bowel syndrome(IBS)is a chronic functional bowel disorder characterized by recurrent abdominal pain with altered bowel habits that affects approximately 15%of the population worldwide[1].IBS significantly impacts the quality of life of patients.Although the pathogenesis of IBS is not completely understood,the role of abnormal visceral sensitivity in IBS has recently emerged[2,3].5-Hydroxytryptamine(5-HT)is known to play a key role in the physiological states of the gastrointestinal tract.Plasma 5-HT levels in IBS with diarrhea(IBS-D)patients were greater than those in healthy controls[4],suggesting a possible role of 5-HT in the pathogenesis of IBS-D.The serotonin receptor 2(5-HT2 receptor)family comprises three subtypes:5-HT2A,5-HT2B,and 5-HT2c.All 5-HT2 receptors exhibit 46%-50%overall sequence identity,and all of these receptors preferentially bind to Gq/11 to increase inositol phosphates and intracellular calcium mobilization[5].5-HT2B receptors are widely expressed throughout the gut,and experimental evidence suggests that the primary function of 5-HT2B receptors is to mediate contractile responses to 5-HT through its action on smooth muscle[6].The 5-HT2B receptor is localized to both neurons of the myenteric nerve plexus and smooth muscle in the human colon.The 5-HT2B receptor mediates 5-HT-evoked contraction of longitudinal smooth muscle[6].These findings suggest that the 5-HT2B receptor could play an important role in modulating colonic motility,which could affect sensory signaling in the gut.Other laboratories have shown that the 5-HT2B receptor participates in the development of mechanical and formalin-induced hyperalgesia[7,8].A 5-HT2B receptor antagonist reduced 2,4,6-trinitrobenzene sulfonic acid(TNBS)and stress-induced visceral hyperalgesia in rats[9,10].However,the role of the 5-HT2B receptor in IBS-D patients and in acetic acid-and wrap restraint-induced IBS-D rat models was not investigated.
基金Supported by The National Natural Science Foundation of China,No. 81801943Shanghai Pujiang Program,No. 21PJD009The Research Grant for Public Health Key Discipline of Shanghai Municipality,China,No. GWV-10.1-XK26
文摘The intestinal mucosa is a highly compartmentalized structure that forms a directbarrier between the host intestine and the environment, and its dysfunction couldresult in a serious disease. As T cells, which are important components of themucosal immune system, interact with gut microbiota and maintain intestinalhomeostasis, they may be involved in the process of intestinal barrier dysfunction.P2X7 receptor (P2X7R), a member of the P2X receptors family, mediates the effectsof extracellular adenosine triphosphate and is expressed by most innate or adaptiveimmune cells, including T cells. Current evidence has demonstrated thatP2X7R is involved in inflammation and mediates the survival and differentiationof T lymphocytes, indicating its potential role in the regulation of T cell function.In this review, we summarize the available research about the regulatory role andmechanism of P2X7R on the intestinal mucosa-derived T cells in the setting ofintestinal barrier dysfunction.
文摘BACKGROUND: In adults, vitamin K-dependent coagulation factor deficiency (VKCFD) increases in the recent years. We treated a VKCFD patient with subarachnoid hemorrhage, with favorable outcomes.METHODS: A 19-year-old male student with VKCFD was treated at our hospital. The initial treatment was injection of a large dose of vitamin K and fresh plasma, and then with oral high dose of vitamin K4.RESULTS: At 4 weeks after admission, the focus of hemorrhage subsided, neurological examination was normal, and the patient was discharged.CONCLUSIONS: VKCFD is rare and its diagnosis should be based on the history of the patient and the results of laboratory examinations. A large dose of vitamin K is the fi rst choice of treatment.
基金supported by the National Natural Science Foundation of China(Grant No.11772344)National Key R&D Program of China(Project No.2016YFB1100700)。
文摘In the present work,316 L stainless steel specimens are fabricated by selective laser melting(SLM)via optimized laser process parameters.The effects of two extrinsic factors,i.e.,strain rate and annealing temperature,on the mechanical performance of SLM-processed parts are studied.The two intrinsic factors,namely strain rate sensitivity m and work hardening exponent n,which control the tensile properties of the as-built samples,are quantified.Micro structure characterizations show that cellular structure and crystalline grain exhibit apparently different thermal stability at 873 K.Tensile testing reveals that the yield strength decreases from 584±16 MPa to 323±2 MPa,while the elongation to failure increases from(46±1)%to(65±2)%when annealing temperature varies from 298 K to 1328 K.The n value increases from 0.13 to 0.33 with the increase in annealing temperature.Due to the presence of fine cellular structures and high relative density achieved in as-printed 316 L samples,a strong dependence between tensile yield strength and strain rate is observed.In addition,the strain rate sensitivity of the SLM-produced 316 L part(m=0.017)is much larger than that of conventional coarse-grained part(m=0.006),whereas the n value increases slightly from 0.097 to 0.14 with increasing strain rate.
基金supported by the National Natural Science Foundation of China(Grant No.11772344)the National Key R&D Program of China(Project No.2016YFB1100700)。
文摘Previous studies have revealed that laser power and energy density are significant factors affecting the quality of parts manufactured by selective laser melting(SLM).The normalized equivalent density E_(0)^(*) and dimensionless laser power q^(*),which can be regarded as a progress on the understanding of the corresponding dimensional quantities,are adopted in this study to examine the defects,melt pool shape,and primary dendrite spacing of the SLM-manufactured 316 L stainless steel,because it reflects the combined effect of process parameters and material features.It is found that the number of large defects decreases with increasing E_(0)^(*) due to enough heat input during the SLM process,but it will show an increasing trend when excessive heat input(i.e.,utilizing a high E_(0)^(*))is imported into the powder bed.The q^(*) plays an important role in controlling maximum temperature rising in the SLM process,and in turn,it affects the number of large defects.A large q^(*) value results in a low value of absolute frequency of large defects,whereas a maximum value of absolute frequency of large defects is achieved at a low q^(*) even if E_(0)^(*) is very high.The density of the built parts is greater at a higher q^(*) when E_(0)^(*)remains constant.Increasing the melt pool depth at relatively low value of E_(0)^(*) enhances the relative density of the parts.A narrow,deep melt pool can be easily generated at a high q^(*) when E_(0)^(*) is sumciently high,but it may increase melt pool instability and cause keyhole defects.It is revealed that a low E_(0)^(*) can lead to a high cooling rate,which results in a refined primary dendrite spacing.Relatively low E_(0)^(*) is emphasized in selecting the process parameters for the tensile test sample fabrication.It shows that excellent tensile properties,namely ultimate tensile strength,yield strength,and elongation to failure of 773 MPa,584 MPa,and 46%,respectively,can be achieved at a relatively low E_(0)^(*) without heat treatment.
文摘In the Original Publication of the article,some reference numbers in the Figs.1,5,14 and Appendixes B,C,D are mismatched.The corrected reference numbers in the figures and appendixes are given below.