Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-s...Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-stacking tendency,and high density.To tackle these challenges,MXene nanosheets were incorporated into polyacrylonitrile(PAN)nanofibers and subsequently assembled into a three-dimensional(3D)network structure through PAN carbonization,yielding MXene/C aerogels.The 3D network effectively extends the path of microcurrent transmission,leading to enhanced conductive loss of electromagnetic(EM)waves.Moreover,the aerogel’s rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXenebased absorbers.EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss(RL_(min))value of−53.02 dB(f=4.44 GHz,t=3.8 mm),and an effective absorption bandwidth(EAB)of 5.3 GHz(t=2.4 mm,7.44–12.72 GHz).Radar cross-sectional(RCS)simulations were employed to assess the radar stealth effect of the aerogels,revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m^(2).In addition to the MA performance,the MXene/C aerogel also demonstrates good thermal insulation performance,and a 5-mm-thick aerogel can generate a temperature gradient of over 30℃ at 82℃.This study provides a feasible design approach for creating lightweight,efficient,and multifunctional MXene-based MA materials.展开更多
The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-fi...The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-filled fluorocarbon coating were evaluated, and compared with those filled by commercial calcium carbonate. All the shell powder-filled coatings can meet the requirements stated in the relevant standards, and with decreasing the particle size of the shell powders, the performance of the thermal insulation coating is enhanced. The coating(SC3) filled by shell powders with an average particle size of 2.81 μm possesses a better thermal insulation performance than the coating(CC) filled by commercial calcium carbonate. The coating SC3 has comparable adhesive force and washing resistance with the coating CC, and in the washing resistance test, after 2000 cycles, the coating SC3 was still able to cover totally their substrates. This work demonstrates a high value-added disposal method for the aquacultural wastes.展开更多
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th...Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.展开更多
Two-dimensional(2D)materials have received tremendous attention because they possess a set of merits not available in bulk materials,such as large specific surface area,low energy barrier for electron transportation a...Two-dimensional(2D)materials have received tremendous attention because they possess a set of merits not available in bulk materials,such as large specific surface area,low energy barrier for electron transportation and short ion diffusion path.These advantages are desirable especially for the electrodes in electrochemical energy storage devices.MXenes,first synthesized in 2011 by etching their MAX phase precursors,have plural reasons to represent a new family of 2D materials.Their rich diversity in structure and composition together with the uncommon combination of good electrical conductivity and hydrophilicity makes themselves outstand in the whole 2D materials world.Based on these advantages,MXenes hold great promise for various technologically important applications,particularly in developing new energy storage techniques for advanced smart systems,such as portable and flexible electronics.There have been remarkable research achievements in the synthesis and application of MXene-based materials.While new synthesis routes being continuously reported,MXenes with new composition and novel structure have also been routinely discovered,which will undoubtedly help understand the fundamental properties and expand the application scope of MXenes.As for their energy storage-related applications,to cope with the intrinsic weakness of MXenes,many endeavors have been made by doping,structure-tuning and compositing with hybrid ingredients.In this review,the current status of MXenes synthesis and up-to-date progress of their applications in supercapacitors,metal-ion batteries and lithium sulfur batteries are summarized and discussed,and the typical work on the application of MXenes for the aforementioned three categories is respectively tabulated for reference and comparison.展开更多
Al-containing MAX phase ceramic has demonstrated great potential in the field of high-performance low-voltage electrical contact material.Elucidating the anti-arc erosion mechanism of the MAX phase is crucial for furt...Al-containing MAX phase ceramic has demonstrated great potential in the field of high-performance low-voltage electrical contact material.Elucidating the anti-arc erosion mechanism of the MAX phase is crucial for further improving performance,but it is not well-understood.In this study,Ag/Ti_(3)AlC_(2) electrical contact material was synthesized by powder metallurgy and examined by nanoindentation techniques such as constant loading rate indentation,creep testing,and continuous stiffness measurements.Our results indicated a gradual degradation in the nano-mechanical properties of the Ti_(3)AlC_(2) reinforcing phase with increasing arc erosion times,although the rate of this degradation appeared to decelerate over arc erosion times.Specifically,continuous stiffness measurements highlighted the uneven mechanical properties within Ti_(3)AlC_(2),attributing this heterogeneity to the phase’s decomposition.During the early(1-100 times)and intermediate(100-1000 times)stages of arc erosion,the decline in the nano-mechanical properties of Ti_(3)AlC_(2) was primarily ascribed to the decomposition of Ti_(3)AlC_(2) and limited surface oxidation.During the later stage of arc erosion(1000-6200 times),the inner region of Ti_(3)AlC_(2) also sustained arc damage,but a thick oxide layer formed on its surface,enhancing the mechanical properties and overall arc erosion resistance of the Ag/Ti_(3)AlC_(2).展开更多
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ...Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.展开更多
New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion propertie...New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.展开更多
Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sin...Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sintered samples of Ti3AlC2 were studied in this paper.The optimized condition of 1 wt%of arabic gum as dispersant at pH=10 results in a Ti3AlC2 suspension for slip casting Ti3AlC2 green compacts without macro defects or cracks.The sintering temperature and Al4C3 embedding powder are found to dominate the properties of the sintered Ti3AlC2 samples.The Ti3AlC2 sample sintered at 1450℃for 1.5 h with Al4C3 embedding powder reaches the best properties,namely 95.3%relative density,hardness of 4.18 GPa,thermal conductivity of 29.11W·m-1·K-1,and electrical resistivity of 0.39μΩ·m.The findings in this work may pave the way for the application of MAX phases with large size and complex shape.展开更多
The achievement of chemical diversity and performance regulation of MAX phases primarily relies on solid solution approaches.However,the reported A-site solid solution is undervalued due to their expected chemical dis...The achievement of chemical diversity and performance regulation of MAX phases primarily relies on solid solution approaches.However,the reported A-site solid solution is undervalued due to their expected chemical disorder and compliance with Vegard’s law,as well as discontinuous composition and poor purity.Herein,we synthesized high-purity Ti_(2)(Sn_(x)Al_(1−x))C(x=0–1)solid solution by the feasible pressureless sintering,enabling us to investigate their property evolution upon the A-site composition.The formation mechanism of Ti_(2)(Sn_(x)Al_(1−x))C was revealed by thermal analysis,and crystal parameters were determined by Rietveld refinement of X-ray diffraction(XRD).The lattice constant(a)adheres to Vegard’s law,while the lattice constant(c)and internal free parameter(zM)have noticeable deviations from the law,which is caused by the significant nonlinear distortion of Ti_(6)C octahedron as Al atoms are substituted by Sn atoms.Also,the deviation also results in nonlinear changes in their physicochemical properties,which means that the solid solution often exhibits better performance than end members,such as hardness,electrical conductivity,and corrosion resistance.This work offers insights into the deviation from Vegard’s law observed in the A-site solid solution and indicates that the solid solution with enhanced performance may be obtained by tuning the A-site composition.展开更多
Spontaneous tin whisker growth has been mysterious and catastrophic for more than half century. The difficulty in the research on this topic consists of the randomness of the whisker growth, the slow growth rate and m...Spontaneous tin whisker growth has been mysterious and catastrophic for more than half century. The difficulty in the research on this topic consists of the randomness of the whisker growth, the slow growth rate and many other tricky factors. Herein, with Ti2SnC-Sn as a new platform, fast tin whisker growth is realized to facilitate the research. The whisker morphology is found to be modulated by oxide film. A striated whisker morphology forms as growing in air, whereas a faceted morphology forms in vacuum.Furthermore, the evolution to the faceted morphology is attributed to the reconstruction of the whisker surface driven by surface energy reduction. The findings might open a new avenue to uncover the myths of this long-standing issue, and thus develop a long-awaited lead-free tin whisker mitigation strategy.展开更多
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011;they have shown excellent prospects for energy storage applications owing to their unique ...MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011;they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties.One major feature of MXenes is their tailorable surface terminations(e.g.,-F,-O,-OH).Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes.Nonetheless,the underlying mechanisms are still poorly understood,mainly because of the difficulties in quantitative analysis and characterization.This review summarizes the latest research progress on MXene terminations.First,a systematic introduction to the approaches for preparing MXenes is presented,which generally dominates the surface terminations.Then,theoretical and experimental efforts regarding the surface terminations are discussed,and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized.Finally,we present the significance and research prospects of MXene terminations.We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.展开更多
The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue...The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue to emerge.In this study,Ti_(2)SnC is found to be capable of extracting Sn out of its alloys(Sn Bi,Sn Ag)by selectively growing Sn whiskers,and the Sn whiskers share the features of the traditional whiskers on platings and solders.Replacing the Ti_(2)SnC substrate with Ti C or Si C,under the same conditions,however,the selective growth of Sn whisker does not happen,which means Ti_(2)SnC plays a critical role in it.Based on the unique crystal structure of Ti_(2)SnC,active Sn atoms diffusing through the basal planes of Ti_(2)SnC is proposed to explain the selectivity.The driving force is suggested to be the high interfacial energy between Ti_(2)SnC and tin.This study is of importance to further understand the growth mechanism of metallic whiskers,and it may be also possible to be harnessed to develop paradigm-shifting technologies of metal purification and metallic whisker/nanowire preparation.展开更多
Spontaneous metal whisker growth phenomenon has been studied for -70 years, but still resists in- terpretations, which has haunted the electronics-rich systems from the birth of the industry since whiskers may lead to...Spontaneous metal whisker growth phenomenon has been studied for -70 years, but still resists in- terpretations, which has haunted the electronics-rich systems from the birth of the industry since whiskers may lead to short circuits and hence other disasters. In addition to reliability problems, threat of Pb whiskers to human health is also significant due to the toxicity of the element and its geometry as well as its nanometer size. This issue becomes more attention drawing and urgent due to the restrictions on Pb use in ELI, Japan etc., which phases out the Pb-addition practice to mitigate Sn whiskers. This paper reviews the origin of the whiskering phenomenon and whisker-induced problems, ranging from early in the World War II to the present; details the development of this issue in the electronics-rich systems including the phenomenon, problems and remedies; pictures the long history of the developments of the growth mechanisms and models which are full of hardship and contradictions. New aspects on the spontaneous whisker growth in some different substrates, such as in brasses and MAX phase materials are reviewed in more details. The latter was found to be a promising system to understand the whisker growth phenomenon, with new growth models proposed that may shed new light to the intricate battle field of the metal whisker research in general.展开更多
Zinc-air batteries(ZABs)are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions(ORR/OER).Herein,the bifunctional catalyst consisting of MXene...Zinc-air batteries(ZABs)are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions(ORR/OER).Herein,the bifunctional catalyst consisting of MXene and metal compounds has been constructed via a controllable strategy.For demonstration,a 3D MXene framework with anchored heterostructure CoNi/CoNiP and nitrogen-doped carbon(NC)called H-CNP@M is constructed by metal-ion inducement and phosphorization.The bimetal-semiconductor heterostructure greatly enhances the catalytic performance.The H-CNP@M exhibits superior activities to-Ward ORR(E_(i/2)=0.833V)and OER(η_(10)=294 mV).Both aqueous and all-solid-state ZAB assembled with H-CNP@M demonstrate superior performance(peak power density of 166.5 mW/cm^(2)in aqueous case).This work provides a facile and general strategy to prepare MXene-supported bimetallic heterostructure for high-performance electrochemical energy devices.展开更多
Spontaneous growth of metal whiskers, represented by tin whiskers, has haunted tin-based platings and solder joints for decades and caused huge losses to the electronics industry. Despite numerous efforts, the underly...Spontaneous growth of metal whiskers, represented by tin whiskers, has haunted tin-based platings and solder joints for decades and caused huge losses to the electronics industry. Despite numerous efforts, the underlying growth mechanism has been resisting interpretation, and the whiskering phenomenon even continues to expand its territory. Here, we report the growth of tin whiskers from a Ti6Sn5intermetallic.These tin whiskers share similar characteristics with those found on the platings or solder joints, but grow more and faster, with finer diameters. After tin whisker growth, Ti6Sn5retains its crystal structure,implying a dealloying process. Combining experimental and first-principles calculation results, we analyzed the growth mechanism of tin whiskers in detail, and proposed a diffusion-based growth model.The strain energy stored in Ti6Sn5during deformation provides a driving force for whisker growth, and the short-circuit diffusion paths generated by such deformation accelerate whisker growth. These findings identify the critical role of intermetallic substrate in the whiskering phenomenon, shedding new light for comprehensively understanding the whisker growth mechanisms. Furthermore, the plenty and rapid growth of tin whiskers also means a new method for the preparation of one-dimensional metallic materials.展开更多
The growth of Sn whiskers from Ti_(2)SnC/Sn-X(X=Sn,Bi,Pb,Ga)samples was studied in this work to understand the effect of alloying elements on whiskering behaviors.The mobility of source Sn atoms relating with the form...The growth of Sn whiskers from Ti_(2)SnC/Sn-X(X=Sn,Bi,Pb,Ga)samples was studied in this work to understand the effect of alloying elements on whiskering behaviors.The mobility of source Sn atoms relating with the formation and migration of defects was found to be the critical factor dominating the growth rate,with the gathering of which to grow whiskers on the surface acts as an effective means to lower the enthalpy.As a result,the source Sn atoms would migrate to whisker root spontaneously,making the growth of whiskers the nature of materials,and external factors like compressive stress or oxidation are no more necessary but facilitate the whiskering process by promoting the mobility of source Sn atoms.展开更多
This work aims at understanding the features of the Sn grains from which whiskers prefe rentially grow.The growth behavior of Sn whiskers on a 50 μm thick hypereutectic Sn-Al alloy coating was observed in situ by map...This work aims at understanding the features of the Sn grains from which whiskers prefe rentially grow.The growth behavior of Sn whiskers on a 50 μm thick hypereutectic Sn-Al alloy coating was observed in situ by mapping the grain orientations before and after aging using the electron backscatter diffraction(EBSD) technique.Sn whiskers were found to grow preferentially from the(001) or near-(001) grains surrounded by the grains having perpendicular orientations,such as(100),(110) and(210).The compre s sive stress in the coating was heterogeneous,and the(001) grains exhibited the higher compressive stress close to the grain boundaries.The orientation relationship between α-Al phase and β-Sn phase was confirmed as(200)_(α-A)||(200)_(β-Sn,[011]_(α-A)||[001]_(β-Sn).The plane matching resulted in approximately0.7 % misfit strain in β-Sn,which had little impact on the growth of whiskers.Dislocations pile-ups were found in the(001) grains and repulsed by the Sn oxide layer,giving the probability of cracking the oxide.Grain boundaries were found between the whisker and underneath grain.The dominant diffusion mode for early whisker growth was grain boundary diffusion aided by pipe diffusion.展开更多
基金supported by the National Natural Science Foundation of China(52171033)the Natural Science Foundation of Jiangsu Province(No.BK20201283).
文摘Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-stacking tendency,and high density.To tackle these challenges,MXene nanosheets were incorporated into polyacrylonitrile(PAN)nanofibers and subsequently assembled into a three-dimensional(3D)network structure through PAN carbonization,yielding MXene/C aerogels.The 3D network effectively extends the path of microcurrent transmission,leading to enhanced conductive loss of electromagnetic(EM)waves.Moreover,the aerogel’s rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXenebased absorbers.EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss(RL_(min))value of−53.02 dB(f=4.44 GHz,t=3.8 mm),and an effective absorption bandwidth(EAB)of 5.3 GHz(t=2.4 mm,7.44–12.72 GHz).Radar cross-sectional(RCS)simulations were employed to assess the radar stealth effect of the aerogels,revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m^(2).In addition to the MA performance,the MXene/C aerogel also demonstrates good thermal insulation performance,and a 5-mm-thick aerogel can generate a temperature gradient of over 30℃ at 82℃.This study provides a feasible design approach for creating lightweight,efficient,and multifunctional MXene-based MA materials.
基金Supported by the National Natural Science Foundation of China(51501038,51731004,51671054)the Fundamental Research Funds for the Central Universities(3212007203)
文摘The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-filled fluorocarbon coating were evaluated, and compared with those filled by commercial calcium carbonate. All the shell powder-filled coatings can meet the requirements stated in the relevant standards, and with decreasing the particle size of the shell powders, the performance of the thermal insulation coating is enhanced. The coating(SC3) filled by shell powders with an average particle size of 2.81 μm possesses a better thermal insulation performance than the coating(CC) filled by commercial calcium carbonate. The coating SC3 has comparable adhesive force and washing resistance with the coating CC, and in the washing resistance test, after 2000 cycles, the coating SC3 was still able to cover totally their substrates. This work demonstrates a high value-added disposal method for the aquacultural wastes.
基金The authors thank the financial support from the National Natural Science Foundation of China(No.52201242 and 52250010)Natural Science Foundation of Jiangsu Province(No.BK20200386)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)the Fundamental Research Funds for the Central Universities(No.2242022R40018).
文摘Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
基金supported by the Grants of National Natural Science Foundation of China(52171033 and 51731004)Natural Science Foundation of Jiangsu Province(BK20201283)Zhishan Youth Scholar Program of SEU.
文摘Two-dimensional(2D)materials have received tremendous attention because they possess a set of merits not available in bulk materials,such as large specific surface area,low energy barrier for electron transportation and short ion diffusion path.These advantages are desirable especially for the electrodes in electrochemical energy storage devices.MXenes,first synthesized in 2011 by etching their MAX phase precursors,have plural reasons to represent a new family of 2D materials.Their rich diversity in structure and composition together with the uncommon combination of good electrical conductivity and hydrophilicity makes themselves outstand in the whole 2D materials world.Based on these advantages,MXenes hold great promise for various technologically important applications,particularly in developing new energy storage techniques for advanced smart systems,such as portable and flexible electronics.There have been remarkable research achievements in the synthesis and application of MXene-based materials.While new synthesis routes being continuously reported,MXenes with new composition and novel structure have also been routinely discovered,which will undoubtedly help understand the fundamental properties and expand the application scope of MXenes.As for their energy storage-related applications,to cope with the intrinsic weakness of MXenes,many endeavors have been made by doping,structure-tuning and compositing with hybrid ingredients.In this review,the current status of MXenes synthesis and up-to-date progress of their applications in supercapacitors,metal-ion batteries and lithium sulfur batteries are summarized and discussed,and the typical work on the application of MXenes for the aforementioned three categories is respectively tabulated for reference and comparison.
基金supported by the National Natural Science Foundation of China(52101064,52171033)Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z158)Natural Science Foundation of Jiangsu Province(BK20220627).
文摘Al-containing MAX phase ceramic has demonstrated great potential in the field of high-performance low-voltage electrical contact material.Elucidating the anti-arc erosion mechanism of the MAX phase is crucial for further improving performance,but it is not well-understood.In this study,Ag/Ti_(3)AlC_(2) electrical contact material was synthesized by powder metallurgy and examined by nanoindentation techniques such as constant loading rate indentation,creep testing,and continuous stiffness measurements.Our results indicated a gradual degradation in the nano-mechanical properties of the Ti_(3)AlC_(2) reinforcing phase with increasing arc erosion times,although the rate of this degradation appeared to decelerate over arc erosion times.Specifically,continuous stiffness measurements highlighted the uneven mechanical properties within Ti_(3)AlC_(2),attributing this heterogeneity to the phase’s decomposition.During the early(1-100 times)and intermediate(100-1000 times)stages of arc erosion,the decline in the nano-mechanical properties of Ti_(3)AlC_(2) was primarily ascribed to the decomposition of Ti_(3)AlC_(2) and limited surface oxidation.During the later stage of arc erosion(1000-6200 times),the inner region of Ti_(3)AlC_(2) also sustained arc damage,but a thick oxide layer formed on its surface,enhancing the mechanical properties and overall arc erosion resistance of the Ag/Ti_(3)AlC_(2).
基金This work received financial support from the National Natural Science Foundation of China(Grant Nos.U23A20574,52250010,and 52201242)the 261 Project MIIT,the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242022R40018)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB75).
文摘Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51731004, 51671054, and 51501038)the Fundamental Research Funds for the Central Universities in China (Grant Nos. 2242018K40108 and 2242018K40109) were highly appreciated
文摘New Ag/Ti_2 SnC(Ag/TSC) composites with uniform microstructure were prepared by powder metallurgy. The superior wettability between Ag and Ti_2 SnC was confirmed with a contact angle of 14°. Arc erosion properties of Ag/10 wt%Ti_2 SnC(Ag/10 TSC) and Ag/20 wt%Ti_2 SnC(Ag/20 TSC) contacts were investigated under 400 V/100 A/AC-3 and compared with Ag/CdO contact.The Ag/10 TSC contact exhibited comparable arc erosion property to Ag/CdO contact. The fine arc erosion resistance was attributed to the good wettability between Ti_2 SnC and Ag,the good heat-conducting property of Ag/10 TSC, and the slight decomposition of Ti_2 SnC that absorbed part of electric arc energy. The excessive Ti_2 SnC significantly decreased the thermal conducting property of the Ag/20 TSC composite, resulting in the severe heat accumulation that decomposed Ti_2 SnC and deteriorated arc erosion property. The oxidation behavior of Ti_2 SnC under high electric arc temperature was also studied and then an arc erosion mechanism was proposed to get a comprehensive understanding on the arc erosion property of Ag/TSC composites.
基金financially supported by National Natural Science Foundation of China (51731004, 51671054, 51501038)Natural Science Foundation of Jiangsu Province (BK20181285)“the Fundamental Research Funds for the Central Universities” in China (2242018K40108, 2242018K40109)
文摘Slip casting and subsequent pressureless sintering(PLS)allow the preparation of complex-shaped and large-sized Ti3AlC2 components for many potential applications.The behaviors of the suspensions,green compacts,and sintered samples of Ti3AlC2 were studied in this paper.The optimized condition of 1 wt%of arabic gum as dispersant at pH=10 results in a Ti3AlC2 suspension for slip casting Ti3AlC2 green compacts without macro defects or cracks.The sintering temperature and Al4C3 embedding powder are found to dominate the properties of the sintered Ti3AlC2 samples.The Ti3AlC2 sample sintered at 1450℃for 1.5 h with Al4C3 embedding powder reaches the best properties,namely 95.3%relative density,hardness of 4.18 GPa,thermal conductivity of 29.11W·m-1·K-1,and electrical resistivity of 0.39μΩ·m.The findings in this work may pave the way for the application of MAX phases with large size and complex shape.
基金This work was financially supported by the National Natural Science Foundation of China(No.52171033)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0247).
文摘The achievement of chemical diversity and performance regulation of MAX phases primarily relies on solid solution approaches.However,the reported A-site solid solution is undervalued due to their expected chemical disorder and compliance with Vegard’s law,as well as discontinuous composition and poor purity.Herein,we synthesized high-purity Ti_(2)(Sn_(x)Al_(1−x))C(x=0–1)solid solution by the feasible pressureless sintering,enabling us to investigate their property evolution upon the A-site composition.The formation mechanism of Ti_(2)(Sn_(x)Al_(1−x))C was revealed by thermal analysis,and crystal parameters were determined by Rietveld refinement of X-ray diffraction(XRD).The lattice constant(a)adheres to Vegard’s law,while the lattice constant(c)and internal free parameter(zM)have noticeable deviations from the law,which is caused by the significant nonlinear distortion of Ti_(6)C octahedron as Al atoms are substituted by Sn atoms.Also,the deviation also results in nonlinear changes in their physicochemical properties,which means that the solid solution often exhibits better performance than end members,such as hardness,electrical conductivity,and corrosion resistance.This work offers insights into the deviation from Vegard’s law observed in the A-site solid solution and indicates that the solid solution with enhanced performance may be obtained by tuning the A-site composition.
基金supported by the National Natural Science Foundation of China (No. 51731004, 51501038 and 51671054)Zhishan Scholar Programthe Fundamental Research Funds for the Central Universities
文摘Spontaneous tin whisker growth has been mysterious and catastrophic for more than half century. The difficulty in the research on this topic consists of the randomness of the whisker growth, the slow growth rate and many other tricky factors. Herein, with Ti2SnC-Sn as a new platform, fast tin whisker growth is realized to facilitate the research. The whisker morphology is found to be modulated by oxide film. A striated whisker morphology forms as growing in air, whereas a faceted morphology forms in vacuum.Furthermore, the evolution to the faceted morphology is attributed to the reconstruction of the whisker surface driven by surface energy reduction. The findings might open a new avenue to uncover the myths of this long-standing issue, and thus develop a long-awaited lead-free tin whisker mitigation strategy.
基金funded by the National Natural Science Foundation of China(Nos.51731004 and 51902051)Natural Science Foundation of Jiangsu Province(No.BK20200386)。
文摘MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011;they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties.One major feature of MXenes is their tailorable surface terminations(e.g.,-F,-O,-OH).Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes.Nonetheless,the underlying mechanisms are still poorly understood,mainly because of the difficulties in quantitative analysis and characterization.This review summarizes the latest research progress on MXene terminations.First,a systematic introduction to the approaches for preparing MXenes is presented,which generally dominates the surface terminations.Then,theoretical and experimental efforts regarding the surface terminations are discussed,and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized.Finally,we present the significance and research prospects of MXene terminations.We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.
基金the National Natural Science Foundation of China(No.51731004)the National Key R&D Program of China(No.2017YFE0301403)the Zhishan Youth Scholar Program of Southeast University。
文摘The spontaneous growth of metal whiskers has been investigated for more than 70 years.However,there is still no agreement on its growth mechanism,and moreover,new characteristics of this whiskering phenomenon continue to emerge.In this study,Ti_(2)SnC is found to be capable of extracting Sn out of its alloys(Sn Bi,Sn Ag)by selectively growing Sn whiskers,and the Sn whiskers share the features of the traditional whiskers on platings and solders.Replacing the Ti_(2)SnC substrate with Ti C or Si C,under the same conditions,however,the selective growth of Sn whisker does not happen,which means Ti_(2)SnC plays a critical role in it.Based on the unique crystal structure of Ti_(2)SnC,active Sn atoms diffusing through the basal planes of Ti_(2)SnC is proposed to explain the selectivity.The driving force is suggested to be the high interfacial energy between Ti_(2)SnC and tin.This study is of importance to further understand the growth mechanism of metallic whiskers,and it may be also possible to be harnessed to develop paradigm-shifting technologies of metal purification and metallic whisker/nanowire preparation.
基金supported by the National Natural Science Foundation of China(No.51272043)Jiangsu Planned Projects for Postdoctoral Research Funds(1302008A)+1 种基金China Postdoctoral Science Foundation(2014M551484)the Fundamental Research Funds for the Central Universities(3212004603)
文摘Spontaneous metal whisker growth phenomenon has been studied for -70 years, but still resists in- terpretations, which has haunted the electronics-rich systems from the birth of the industry since whiskers may lead to short circuits and hence other disasters. In addition to reliability problems, threat of Pb whiskers to human health is also significant due to the toxicity of the element and its geometry as well as its nanometer size. This issue becomes more attention drawing and urgent due to the restrictions on Pb use in ELI, Japan etc., which phases out the Pb-addition practice to mitigate Sn whiskers. This paper reviews the origin of the whiskering phenomenon and whisker-induced problems, ranging from early in the World War II to the present; details the development of this issue in the electronics-rich systems including the phenomenon, problems and remedies; pictures the long history of the developments of the growth mechanisms and models which are full of hardship and contradictions. New aspects on the spontaneous whisker growth in some different substrates, such as in brasses and MAX phase materials are reviewed in more details. The latter was found to be a promising system to understand the whisker growth phenomenon, with new growth models proposed that may shed new light to the intricate battle field of the metal whisker research in general.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20200406)National Natural Science Foundation of China(Nos.51731004,22075263,52002366)+2 种基金National Key R&D Program of China(No.2021YFA1501502)the Fundamental Research Funds for the Central Universities(No.WK2060000039)the Collaborative Research Fund(No.C5031-20G)from Research Grant Council,University Grants Committee,Hong Kong SAR,and Project of Strategic Importance Program of The Hong Kong Polytechnic University(No.P0035168).
文摘Zinc-air batteries(ZABs)are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions(ORR/OER).Herein,the bifunctional catalyst consisting of MXene and metal compounds has been constructed via a controllable strategy.For demonstration,a 3D MXene framework with anchored heterostructure CoNi/CoNiP and nitrogen-doped carbon(NC)called H-CNP@M is constructed by metal-ion inducement and phosphorization.The bimetal-semiconductor heterostructure greatly enhances the catalytic performance.The H-CNP@M exhibits superior activities to-Ward ORR(E_(i/2)=0.833V)and OER(η_(10)=294 mV).Both aqueous and all-solid-state ZAB assembled with H-CNP@M demonstrate superior performance(peak power density of 166.5 mW/cm^(2)in aqueous case).This work provides a facile and general strategy to prepare MXene-supported bimetallic heterostructure for high-performance electrochemical energy devices.
基金financially supported by the National Key R&D Program of China(No.2017YFE0301403)the National Natural Science Foundation of China(Nos.51731004 and 52171033)the Natural Science Foundation of Jiangsu Province(No.BK20201283)。
文摘Spontaneous growth of metal whiskers, represented by tin whiskers, has haunted tin-based platings and solder joints for decades and caused huge losses to the electronics industry. Despite numerous efforts, the underlying growth mechanism has been resisting interpretation, and the whiskering phenomenon even continues to expand its territory. Here, we report the growth of tin whiskers from a Ti6Sn5intermetallic.These tin whiskers share similar characteristics with those found on the platings or solder joints, but grow more and faster, with finer diameters. After tin whisker growth, Ti6Sn5retains its crystal structure,implying a dealloying process. Combining experimental and first-principles calculation results, we analyzed the growth mechanism of tin whiskers in detail, and proposed a diffusion-based growth model.The strain energy stored in Ti6Sn5during deformation provides a driving force for whisker growth, and the short-circuit diffusion paths generated by such deformation accelerate whisker growth. These findings identify the critical role of intermetallic substrate in the whiskering phenomenon, shedding new light for comprehensively understanding the whisker growth mechanisms. Furthermore, the plenty and rapid growth of tin whiskers also means a new method for the preparation of one-dimensional metallic materials.
基金This work is financially supported by the National Natural Science Foundation of China(NSFC)(Nos.51902051,51731004 and 11875248)the China Postdoctoral Science Foundation(No.2019M661687).
文摘The growth of Sn whiskers from Ti_(2)SnC/Sn-X(X=Sn,Bi,Pb,Ga)samples was studied in this work to understand the effect of alloying elements on whiskering behaviors.The mobility of source Sn atoms relating with the formation and migration of defects was found to be the critical factor dominating the growth rate,with the gathering of which to grow whiskers on the surface acts as an effective means to lower the enthalpy.As a result,the source Sn atoms would migrate to whisker root spontaneously,making the growth of whiskers the nature of materials,and external factors like compressive stress or oxidation are no more necessary but facilitate the whiskering process by promoting the mobility of source Sn atoms.
基金financially supported by the National Natural Science Foundation of China(No.51731004)Zhishan Youth Scholar Program of Southeast University。
文摘This work aims at understanding the features of the Sn grains from which whiskers prefe rentially grow.The growth behavior of Sn whiskers on a 50 μm thick hypereutectic Sn-Al alloy coating was observed in situ by mapping the grain orientations before and after aging using the electron backscatter diffraction(EBSD) technique.Sn whiskers were found to grow preferentially from the(001) or near-(001) grains surrounded by the grains having perpendicular orientations,such as(100),(110) and(210).The compre s sive stress in the coating was heterogeneous,and the(001) grains exhibited the higher compressive stress close to the grain boundaries.The orientation relationship between α-Al phase and β-Sn phase was confirmed as(200)_(α-A)||(200)_(β-Sn,[011]_(α-A)||[001]_(β-Sn).The plane matching resulted in approximately0.7 % misfit strain in β-Sn,which had little impact on the growth of whiskers.Dislocations pile-ups were found in the(001) grains and repulsed by the Sn oxide layer,giving the probability of cracking the oxide.Grain boundaries were found between the whisker and underneath grain.The dominant diffusion mode for early whisker growth was grain boundary diffusion aided by pipe diffusion.