Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we ...Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.展开更多
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo...Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.展开更多
Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selec...Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selective hydrogenation of benzene were explored. A series of Ru–Zn catalysts with different Zn contents and ZnO morphologies were prepared by changing the amount of NaOH in the co-precipitation process. The catalysts were characterized by N_2 physisorption, X-ray powder diffraction(XRD), inductively coupled plasma optical emission spectrometer(ICP-OES), scanning electron microscope(SEM), temperature-programmed reduction(H_2-TPR)and Malvern laser particle size analyzer. It is found that with increasing the amount of NaOH, the Zn content first increased then decreased, and the ZnO crystals changed from relatively thicker pyramidal-shaped crystals to slimmer needle-shaped crystals. The catalyst had the highest Zn content(22.1%) and strongest interaction between ZnO crystals and Ru particles at pH 10.6 of the solution after reduction. As a result, it had the lowest activity. The activity of Ru–Zn catalysts is affected by both the Zn content and the interaction between ZnO crystals and Ru particles. The effect of reduction time was also investigated. Prolonging the reduction time caused no significant growth of ZnO crystals but the aggregation of catalyst particles and growth of Ru nanocrystals, thus resulting in the decrease of catalytic activity.展开更多
Solid acid catalyst plays a crucial role in the petroleum refinery industry and bio-refinery technology.In this work,p-phenolsulfonic acid(PSA)was successfully grafted onto the surface of KH560-modified zirconium phos...Solid acid catalyst plays a crucial role in the petroleum refinery industry and bio-refinery technology.In this work,p-phenolsulfonic acid(PSA)was successfully grafted onto the surface of KH560-modified zirconium phosphate(K-ZrP)in a facile routine.The structure and property of this organic-inorganic combined solid acid PSA/K-ZrP-x were characterized via XRD,FTIR,^(13)C solid-state NMR,TG,N_(2) adsorption-desorption,SEM,pyridine-adsorption FTIR and XPS technologies.The characterization results showed that KH560 can bond with ZrP and promote the grafting of PSA on the surface of K-ZrP via the condensation reaction between its epoxy ring and the phenolic hydroxyl group in PSA.Consequently,PSA/K-ZrP-2 exhibited excellent performance and stability in the transesterification between glycerol and methyl acetate among the tested H_(3)PW_(12)O_(40),Amber-lyst-45,HBEA,HZSM-5,ZrP,AlCl_(3) and FeCl_(3) catalysts.The calculated conversion of glycerol reached 81.3%with a 97.9%selectivity for monoacetin(MAG)and diacetin(DAG)with a 2.2%dosage of[H^(+)]at 100℃ for 4 h.The highest specific activity of PSA/K-ZrP-2 reached 24028.2 mg-glycerol/g-cat/h in a short reaction time(at 0.17 h),and it could be recycled five times without obvious deactivation.展开更多
基金Supported by the National Natural Science Foundation of China(21676238)
文摘Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.
基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050269)the Fundamental Research Funds for the Central Universities(226-2023-00085,226-2023-00057).
文摘Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.
基金Supported by the National Natural Science Foundation of China(no.U1162129)
文摘Selective hydrogenation of benzene is an atom economic green route to produce cyclohexene. The control of Zn species is the key to the catalytic performance of Ru–Zn catalysts. The influences of ZnO crystals on selective hydrogenation of benzene were explored. A series of Ru–Zn catalysts with different Zn contents and ZnO morphologies were prepared by changing the amount of NaOH in the co-precipitation process. The catalysts were characterized by N_2 physisorption, X-ray powder diffraction(XRD), inductively coupled plasma optical emission spectrometer(ICP-OES), scanning electron microscope(SEM), temperature-programmed reduction(H_2-TPR)and Malvern laser particle size analyzer. It is found that with increasing the amount of NaOH, the Zn content first increased then decreased, and the ZnO crystals changed from relatively thicker pyramidal-shaped crystals to slimmer needle-shaped crystals. The catalyst had the highest Zn content(22.1%) and strongest interaction between ZnO crystals and Ru particles at pH 10.6 of the solution after reduction. As a result, it had the lowest activity. The activity of Ru–Zn catalysts is affected by both the Zn content and the interaction between ZnO crystals and Ru particles. The effect of reduction time was also investigated. Prolonging the reduction time caused no significant growth of ZnO crystals but the aggregation of catalyst particles and growth of Ru nanocrystals, thus resulting in the decrease of catalytic activity.
文摘Solid acid catalyst plays a crucial role in the petroleum refinery industry and bio-refinery technology.In this work,p-phenolsulfonic acid(PSA)was successfully grafted onto the surface of KH560-modified zirconium phosphate(K-ZrP)in a facile routine.The structure and property of this organic-inorganic combined solid acid PSA/K-ZrP-x were characterized via XRD,FTIR,^(13)C solid-state NMR,TG,N_(2) adsorption-desorption,SEM,pyridine-adsorption FTIR and XPS technologies.The characterization results showed that KH560 can bond with ZrP and promote the grafting of PSA on the surface of K-ZrP via the condensation reaction between its epoxy ring and the phenolic hydroxyl group in PSA.Consequently,PSA/K-ZrP-2 exhibited excellent performance and stability in the transesterification between glycerol and methyl acetate among the tested H_(3)PW_(12)O_(40),Amber-lyst-45,HBEA,HZSM-5,ZrP,AlCl_(3) and FeCl_(3) catalysts.The calculated conversion of glycerol reached 81.3%with a 97.9%selectivity for monoacetin(MAG)and diacetin(DAG)with a 2.2%dosage of[H^(+)]at 100℃ for 4 h.The highest specific activity of PSA/K-ZrP-2 reached 24028.2 mg-glycerol/g-cat/h in a short reaction time(at 0.17 h),and it could be recycled five times without obvious deactivation.