The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is chal...The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times.展开更多
Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply cha...Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply chain to align with these objectives.This evaluation spans the entire product life cycle,encompassing design,manufacturing,packaging,distribution,usage,and recycling and disposal processes.Key areas of focus include optimizing raw material selection,improving product recyclability,reducing energy consumption and waste emissions,and minimizing carbon emissions during transportation.Through these endeavors,GWM not only enhances its environmental performance by reducing carbon emissions and resource consumption but also bolsters its brand image and competitiveness in the market.GWM’s dedication to environmental innovation and technological leadership serves as a driving force behind sustainable development and social responsibility within the industry.展开更多
Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal...Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.展开更多
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea...Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.展开更多
Rechargeable zinc-ion batteries with mild aqueous electrolytes are one of the most promising systems for large-scale energy storage as a result of their inherent safety,low cost,environmental-friendliness,and acceptab...Rechargeable zinc-ion batteries with mild aqueous electrolytes are one of the most promising systems for large-scale energy storage as a result of their inherent safety,low cost,environmental-friendliness,and acceptable energy density.However,zinc metal anodes always suffer from unwanted dendrite growth,leading to low Coulombic efficiency and poor cycle stability and during the repeated plating/stripping processes,which substantially restrict their further development and application.To solve these critical issues,a lot of research works have been dedicated to overcoming the drawbacks associated with zinc metal anodes.In this overview,the working mechanisms and existing issues of the zinc metal anodes are first briefly outlined.Moreover,we look into the ongoing processes of the different strategies for achieving highly stable and dendrite-free zinc metal anodes,including crystal engineering,structural engineering,coating engineering,electrolyte engineering,and separator engineering.Finally,some challenges being faced and prospects in this field are provided,together with guiding significant research directions in the future.展开更多
Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far ...Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.展开更多
Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low vo...Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.展开更多
Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of recha...Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them.展开更多
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC compo...A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.展开更多
Rechargeable aqueous zinc-ion batteries(ZIBs)are regarded as a promising competition to lithium-ion batteries as energy storage devices,owing to their high safety and low cost.However,the development of high-performan...Rechargeable aqueous zinc-ion batteries(ZIBs)are regarded as a promising competition to lithium-ion batteries as energy storage devices,owing to their high safety and low cost.However,the development of high-performance ZIBs is largely hindered by the shortage of ideal cathode materials with high-rate capability and long-cycle stability.Herein,we address this bottleneck issue by the quenching-tailored surface chemistry of V_(2)O_(5) cathode nanomaterial.By rapid quenching from high temperatures,Al ions are doped into V_(2)O_(5) lattice(Al-V_(2)O_(5))and abundant oxygen vacancies are formed on the surface/nearsurface,which facilitate the desired rapid electron transfers.Our density functional theory(DFT)simulations elucidate that the doping of Al ions into V_(2)O_(5) remarkably reduces the Zn^(2+)-diffusion barriers and improves the electrical conductivity of V_(2)O_(5).As a proof-of-concept application,the thus-optimized AlV_(2)O_(5) cathode delivers a superior specific capacity of 532 m Ah g^(-1) at 0.1 A g^(-1) and a long-cycling life with76%capacity retention after 5000 cycles,as well as a good rate performance.This work provides not only a novel strategy for tuning the surface chemistry of V_(2)O_(5) to boost the Zn^(2+)storage but also a general pathway of modifying metal oxides with improved electrochemical performance.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the pr...Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure,work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.展开更多
Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is develope...Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm^-2, and stable voltage profiles at 3 mA cm^-2 for ~ 300 h cycling. A low overpotential of ~ 243 mV over 350 cycles at a high current density of 10 mA·cm^-2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g^-1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping drive n from the formation of LiZn alloy on the wavy carb on fibers, resulting in the suppress!on of dendrite growth and pulverization of the Li electrode during cycling.展开更多
Lithium-ion batteries(LIBs)are undoubtedly the current working-horse in almost all portable electronic devices,electric vehicles,and even large-scale stationary energy storage.Given the problems faced by LIBs,a big qu...Lithium-ion batteries(LIBs)are undoubtedly the current working-horse in almost all portable electronic devices,electric vehicles,and even large-scale stationary energy storage.Given the problems faced by LIBs,a big question arises as to which battery(ies)would be the“Beyond LIBs”batteries.Among the front-runners,lithium-sulfur batteries(LSBs)have been extensively pursued owing to their intrinsically high energy density and extremely low cost.Despite the steady and sometimes exciting progress reported on sulfur chemistry and cell performance at laboratory scales over the past decade,one of the major bottlenecks is the poor cyclability.In this perspective,we examine the key challenges and opportunities faced by LSBs,as well as approaches at the materials,electrode/electrolyte and cell integration levels that can be taken to transform LSBs from a front-runner to a real leading champion in the pursuit of the“Beyond LIBs”.While the key new mechanistic insights are very important,we propose a set of the near-future research directions for both the liquid and solid state LSBs,where the currently on-going parallel pursuits of both liquid and solid LSBs will be converging.The“liquid current”will gradually be taken over by“solid future”in the expected LSBs commercialization in the coming decade.展开更多
An efficient integration of electrochromic and electrochemical devices into one flexible entity enables both energy storage and energy-saving dual-functionalities.For this purpose,achieving both high electrochromic an...An efficient integration of electrochromic and electrochemical devices into one flexible entity enables both energy storage and energy-saving dual-functionalities.For this purpose,achieving both high electrochromic and electrochemical performance is the key aspect.Herein,a new 3D architecture is successfully made by knotting W_(17)O_(47)@PEDOT(poly(3,4-ethylenedioxythiophene)):PSS(poly(styrenesulfonate))nanowires with NaWO_(3)nanoknots,and interestingly,the 3D W_(17)O_(47)/(NaWO_(3)-knots)@PEDOT:PSS cathode thus-made simultaneously exhibits a large optical modulation(79.7%at 633 nm),an ultra-long cycling life(76%of original optical modulation retained after 12400 cycles),and a high areal capacitance(55.1 mF cm^(-2)at 0.1 mA cm^(-2)).Our density functional theory(DFT)calculations demonstrate that the much improved dual-functional performance is correlated to the raised electronic conductivity and ion adsorption at the W_(17)O_(47)/(NaWO_(3)nanoknots)interface,together with the ion adsorption of PEDOT:PSS in the 3D-knotted architecture.As a proof-of-concept application,different-sized flexible dual-functional electrochromic/electrochemical devices(FDEDs)were assembled and investigated for various application scenarios,including a smart window(15 cm×10 cm),a wearable wristband(20 cm×2.5 cm),and a smart eyeglass.The smart window made of the FDED enables a large temperature difference of 27.6℃ confirm-tested in model houses,where the energy source also powers three light-emitting diodes(LEDs).The understandings of the key governing principles in the electrodes and dual-functionalities provide a timely foundation for the new generation flexible multifunctional devices.展开更多
Fiber-shaped integrated devices are highly desirable for wearable and portable smart electronics,owing to their merits of lightweight,high flexibility,and wearability.However,how to effectively employ multifunctional ...Fiber-shaped integrated devices are highly desirable for wearable and portable smart electronics,owing to their merits of lightweight,high flexibility,and wearability.However,how to effectively employ multifunctional fibers in one integrated device that can simultaneously achieve energy storage and utilization is a major challenge.Herein,a set of multifunctional fibers all derived from vanadium metal-organic framework nanowires grown on carbon nanotube fiber(V-MOF NWs@CNT fiber)is demonstrated,which can be used for various energy storage and utilization applications.First,a fiber-shaped asymmetric supercapacitor(FASC)is fabricated based on the CoNi-layered double hydroxide nanosheets@vanadium oxide NWs@CNT fiber(CoNi-LDH NSs@V2O5 NWs@CNT fiber)as the positive electrode and vanadium nitride(VN)NWs@CNT fiber as the negative electrode.Benefiting from the outstanding compatibility of the functional materials,the FASC with a maximum working voltage of 1.7 V delivers a high-stack volumetric energy density of 11.27 mW·h/cm3.Then,a fiber-shaped integrated device is assembled by twisting a fiber-shaped piezoresistive sensor(FPS;VN NWs@CNT fiber also served as the highly sensitive material)and a FASC together,where the highperformance FASC can provide a stable and continuous output power for the FPS.Finally,the S-VOx NWs@CNT fiber(sulfur-doped vanadium oxide)electrode shows promising electrocatalytic performance for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),which is further constructed into a self-driven water-splitting unit with the integration of the FASCs.The present work demonstrates that the V-MOF NWs@CNTderived fibers have great potential for constructing wearable multifunctional integrated devices.展开更多
Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating h...Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating high-performance hybrid electrodes for supercapacitors.However,multistep reactions are usually required to obtain these multicomponent systems,thus giving rise to the complicated and time-consuming issues.Herein,we for the first time,demonstrate a green one-pot method to anchor coaxial double-layer MnO_(2)/Ni(OH)_(2)nanosheets on electrospun carbon nanofibers(CNFs)(denoted as MNC),where the intermediate MnO_(2)layer serves as the“nanoglue”to couple the vertically aligned Ni(OH)_(2)nanosheets and conductive CNFs.Benefiting from the unique chemical composition and hierarchical architecture,the resultant electrode delivers outstanding electrochemical performance,including an excellent specific capacitance(1133.3 F g^(-1)at 1 A g^(-1))and an ultrahigh rate capability(844.4 F g^(-1)at 20 A g^(-1)).Moreover,the asymmetric supercapacitor assembled by using the MNC as positive electrode and the CNF as negative electrode can achieve an optimal energy density of 35.1 Wh kg^(-1)and a maximum power density of 8000 W kg^(-1).The one-pot strategy that stabilizes electroactive metal hydroxides on conductive carbons using a MnO_(2)“nanoglue”to design advanced hybrid electrodes is expected to be broadly applicable not only to the supercapacitor technology but also to other electrochemical applications.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1101300)the National Natural Science Foundation of China(Grant No.22225801,21776197,22078214,and 21905206)Special Fund for Science and Technology Innovation Team of Shanxi Province(No.202204051001009).
文摘The ionic transport in sub-nanochannels plays a key role in energy storage,yet suffers from a high energy barrier.Wetting sub-nanochannels is crucial to accelerate ionic transport,but the introduction of water is challenging because of the hydrophobic extreme confinement.We propose wetting the channels by the exothermic hydration process of pre-intercalated ions,the effect of which varies distinctly with different ionic hydration structures and energies.Compared to the failed pre-intercalation of SO_(4)^(2-),HSO_(4)^(-) with weak hydration energy results in a marginal effect on the HOMO(Highest Occupied Molecular Orbital)level of water to avoid water splitting during the electrochemical intercalation.Meanwhile,the ability of water introduction is reserved by the initial incomplete dissociation state of HSO_(4)^(-),so the consequent exothermic reionization and hydration processes of the intercalated HSO_(4)^(-) promote the water introduction into sub-nanochannels,finally forming the stable confined water through hydrogen bonding with functional groups.The wetted channels exhibit a significantly enhanced ionic diffusion coef-ficient by~9.4 times.
文摘Great Wall Motor(GWM),a leading automotive manufacturer,places a strong emphasis on environmental sustainability and social responsibility.The company focuses on comprehensively evaluating and enhancing its supply chain to align with these objectives.This evaluation spans the entire product life cycle,encompassing design,manufacturing,packaging,distribution,usage,and recycling and disposal processes.Key areas of focus include optimizing raw material selection,improving product recyclability,reducing energy consumption and waste emissions,and minimizing carbon emissions during transportation.Through these endeavors,GWM not only enhances its environmental performance by reducing carbon emissions and resource consumption but also bolsters its brand image and competitiveness in the market.GWM’s dedication to environmental innovation and technological leadership serves as a driving force behind sustainable development and social responsibility within the industry.
基金support by Shanghai Municipal Education Commission (No. 2019-01-07-00-09E00020), for research conducted at the Shanghai Universitysupport by Independent depolyment project of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences (E260GC0401)support by the Singapore National Research Foundation (NRF-CRP26-2021-0003, NRF), for research conducted at the National University of Singapore。
文摘Multifunctional electrochromic-induced rechargeable aqueous batteries(MERABs) integrate electrochromism and aqueous ion batteries into one platform, which is able to deliver the conversion and storage of photo-thermal-electrochemical sources.Aqueous ion batteries compensate for the drawbacks of slow kinetic reactions and unsatisfied storage capacities of electrochromic devices. On the other hand, electrochromic technology can enable dynamically regulation of solar light and heat radiation. However,MERABs still face several technical issues, including a trade-off between electrochromic and electrochemical performance, low conversion efficiency and poor service life. In this connection, novel device configuration and electrode materials, and an optimized compatibility need to be considered for multidisciplinary applications. In this review,the unique advantages, key challenges and advanced applications are elucidated in a timely and comprehensive manner. Firstly, the prerequisites for effective integration of the working mechanism and device configuration, as well as the choice of electrode materials are examined. Secondly, the latest advances in the applications of MERABs are discussed, including wearable, self-powered, integrated systems and multisystem conversion. Finally, perspectives on the current challenges and future development are outlined, highlighting the giant leap required from laboratory prototypes to large-scale production and eventual commercialization.
基金supported by the National Natural Science Foundation of China(Grant Nos.22225801 and 21905206)the Open Project of the State Key Laboratory of Functional Materials for Informatics(SKL202107)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.
基金supported by the National Natural Science Foundation of China(U1802256,21975283,21773118,21875107)the Key Research and Development Program in Jiangsu Province(BE2018122)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20191343)the Fundamental Research Funds for the Central Universities(2022QN1088)the General Research Project of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization(2022KF03).
文摘Rechargeable zinc-ion batteries with mild aqueous electrolytes are one of the most promising systems for large-scale energy storage as a result of their inherent safety,low cost,environmental-friendliness,and acceptable energy density.However,zinc metal anodes always suffer from unwanted dendrite growth,leading to low Coulombic efficiency and poor cycle stability and during the repeated plating/stripping processes,which substantially restrict their further development and application.To solve these critical issues,a lot of research works have been dedicated to overcoming the drawbacks associated with zinc metal anodes.In this overview,the working mechanisms and existing issues of the zinc metal anodes are first briefly outlined.Moreover,we look into the ongoing processes of the different strategies for achieving highly stable and dendrite-free zinc metal anodes,including crystal engineering,structural engineering,coating engineering,electrolyte engineering,and separator engineering.Finally,some challenges being faced and prospects in this field are provided,together with guiding significant research directions in the future.
基金J.Wang acknowledges the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095)for research work conducted at the National University of Singapore.Z.L.Liu acknowledges the A*STAR’s Central Research Funds(CRF)Award(Project:SC25/21-111312)+1 种基金Y.Gao acknowledges financial support by ST Engineering Advanced Material Engineering Pte.Ltd.and Singapore Economic Development BoardOpen access funding provided by Shanghai Jiao Tong University
文摘Rechargeable batteries of high energy density and overall performance are becoming a critically important technology in the rapidly changing society of the twenty-first century.While lithium-ion batteries have so far been the dominant choice,numerous emerging applications call for higher capacity,better safety and lower costs while maintaining sufficient cyclability.The design space for potentially better alternatives is extremely large,with numerous new chemistries and architectures being simultaneously explored.These include other insertion ions(e.g.sodium and numerous multivalent ions),conversion electrode materials(e.g.silicon,metallic anodes,halides and chalcogens)and aqueous and solid electrolytes.However,each of these potential“beyond lithium-ion”alternatives faces numerous challenges that often lead to very poor cyclability,especially at the commercial cell level,while lithium-ion batteries continue to improve in performance and decrease in cost.This review examines fundamental principles to rationalise these numerous developments,and in each case,a brief overview is given on the advantages,advances,remaining challenges preventing cell-level implementation and the state-of-the-art of the solutions to these challenges.Finally,research and development results obtained in academia are compared to emerging commercial examples,as a commentary on the current and near-future viability of these“beyond lithium-ion”alternatives.
基金funding support from the CASQueensland Collaborative Science Fund(121E32KYSB20160032)the National Natural Science Foundation of China(No.21403287,No.21433013,51402345,21773291)+1 种基金the National Key R&D Program of China(2016YFB0100100)the CAS-DOE Joint Research Program(121E32KYSB20150004)。
文摘Fiber-supercapacitors(FSCs)are promising power sources for miniature portable and wearable electronic devices.However,the development and practical application of these FSCs have been severely hindered by their low volumetric capacitance and narrow operating voltage.In this work,vertically aligned nickel cobalt sulfide(Ni Co2S4)nanowires grown on carbon nanotube(CNT)fibers were achieved through an in-situ two-step hydrothermal reaction method.The as-prepared Ni Co2S4@CNT fiber electrode exhibits a high volumetric capacitance of 2332 F cm-3,benefiting from its superior electric conductivity,large surface area,and rich Faradic redox reaction sites.Furthermore,a Ni Co2S4@CNT//VN@CNT(vanadium nitride nanosheets grown on CNT fibers)asymmetric fiber-supercapacitor(AFSC)was successfully fabricated.The device exhibits an operating voltage up to 1.6 V and a high volumetric energy density of 30.64m Wh cm-3.The device also possesses outstanding flexibility as evidenced by no obvious performance degradation under various bending angles and maintaining high capacitance after 5000 bending cycles.This work promotes the practical application of flexible wearable energy-storage devices.
基金This work was supported by the National Natural Science Foundation of China(U1802256,51672128,21773118,21875107,51802154)the Key Research and Development Program in Jiangsu Province(BE2018122)+3 种基金Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).Prof.John Wang and team acknowledge the support by MOE,Singapore Ministry of Education(MOE2018-T2-2-095),for research conducted at the National University of SingaporeMr.Jiangmin Jiang would like to acknowledge the financial support from the Funding of Outstanding Doctoral Dissertation in NUAA(BCXJ19-07)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0174)China Scholarship Council(201906830060).
文摘Among the various morphologies of carbon-based materials,hollow carbon nanostructures are of particular interest for energy storage.They have been widely investigated as electrode materials in different types of rechargeable batteries,owing to their high surface areas in association with the high surface-to-volume ratios,controllable pores and pore size distribution,high electrical conductivity,and excellent chemical and mechanical stability,which are beneficial for providing active sites,accelerating electrons/ions transfer,interacting with electrolytes,and giving rise to high specific capacity,rate capability,cycling ability,and overall electrochemical performance.In this overview,we look into the ongoing progresses that are being made with the nanohollow carbon materials,including nanospheres,nanopolyhedrons,and nanofibers,in relation to their applications in the main types of rechargeable batteries.The design and synthesis strategies for them and their electrochemical performance in rechargeable batteries,including lithium-ion batteries,sodium-ion batteries,potassium-ion batteries,and lithium–sulfur batteries are comprehensively reviewed and discussed,together with the challenges being faced and perspectives for them.
基金supported by the Natural Science Foundation of Guangdong Province (Grant No.2017B030306013)the key project of Science and Technology in Guangdong Province (Grant No.2017A010106006)
文摘A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.21771030,12004324)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110859)+1 种基金the support by MOE,Singapore Ministry of Education(MOE2018-T2-295,Singapore),for research of this work conducted at the National University of Singaporethe financial support from China Scholarship Council(CSC No.202006060158)。
文摘Rechargeable aqueous zinc-ion batteries(ZIBs)are regarded as a promising competition to lithium-ion batteries as energy storage devices,owing to their high safety and low cost.However,the development of high-performance ZIBs is largely hindered by the shortage of ideal cathode materials with high-rate capability and long-cycle stability.Herein,we address this bottleneck issue by the quenching-tailored surface chemistry of V_(2)O_(5) cathode nanomaterial.By rapid quenching from high temperatures,Al ions are doped into V_(2)O_(5) lattice(Al-V_(2)O_(5))and abundant oxygen vacancies are formed on the surface/nearsurface,which facilitate the desired rapid electron transfers.Our density functional theory(DFT)simulations elucidate that the doping of Al ions into V_(2)O_(5) remarkably reduces the Zn^(2+)-diffusion barriers and improves the electrical conductivity of V_(2)O_(5).As a proof-of-concept application,the thus-optimized AlV_(2)O_(5) cathode delivers a superior specific capacity of 532 m Ah g^(-1) at 0.1 A g^(-1) and a long-cycling life with76%capacity retention after 5000 cycles,as well as a good rate performance.This work provides not only a novel strategy for tuning the surface chemistry of V_(2)O_(5) to boost the Zn^(2+)storage but also a general pathway of modifying metal oxides with improved electrochemical performance.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金supported by the National Key Research and Development Program of China (2018YFA0209600)Shenzhen Peacock Plan (KQTD2016053015544057)Nanshan Pilot Plan (LHTD20170001)
文摘Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure,work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.
基金National Key Research and Development Program of China (Nos. 2016YFB0100100 and 2018YFB0104000)Key Project of Science and Technology in Guangdong Province (No. 2017A010106006)National Natural Science Foundation of China (Nos. 21433013 and 51471073).
文摘Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm^-2, and stable voltage profiles at 3 mA cm^-2 for ~ 300 h cycling. A low overpotential of ~ 243 mV over 350 cycles at a high current density of 10 mA·cm^-2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g^-1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping drive n from the formation of LiZn alloy on the wavy carb on fibers, resulting in the suppress!on of dendrite growth and pulverization of the Li electrode during cycling.
基金Fundamental Research Funds for the Central Universities(Tongji University),MOE,Singapore Ministry of Education,Grant/Award Number:MOE2018-T2-2-095。
文摘Lithium-ion batteries(LIBs)are undoubtedly the current working-horse in almost all portable electronic devices,electric vehicles,and even large-scale stationary energy storage.Given the problems faced by LIBs,a big question arises as to which battery(ies)would be the“Beyond LIBs”batteries.Among the front-runners,lithium-sulfur batteries(LSBs)have been extensively pursued owing to their intrinsically high energy density and extremely low cost.Despite the steady and sometimes exciting progress reported on sulfur chemistry and cell performance at laboratory scales over the past decade,one of the major bottlenecks is the poor cyclability.In this perspective,we examine the key challenges and opportunities faced by LSBs,as well as approaches at the materials,electrode/electrolyte and cell integration levels that can be taken to transform LSBs from a front-runner to a real leading champion in the pursuit of the“Beyond LIBs”.While the key new mechanistic insights are very important,we propose a set of the near-future research directions for both the liquid and solid state LSBs,where the currently on-going parallel pursuits of both liquid and solid LSBs will be converging.The“liquid current”will gradually be taken over by“solid future”in the expected LSBs commercialization in the coming decade.
基金Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-09-E00020Shanghai Municipal Science and Technology Commission,Grant/Award Number:18JC1412800Singapore Ministry of Education,Grant/Award Number:MOE2018-T2-2-095。
文摘An efficient integration of electrochromic and electrochemical devices into one flexible entity enables both energy storage and energy-saving dual-functionalities.For this purpose,achieving both high electrochromic and electrochemical performance is the key aspect.Herein,a new 3D architecture is successfully made by knotting W_(17)O_(47)@PEDOT(poly(3,4-ethylenedioxythiophene)):PSS(poly(styrenesulfonate))nanowires with NaWO_(3)nanoknots,and interestingly,the 3D W_(17)O_(47)/(NaWO_(3)-knots)@PEDOT:PSS cathode thus-made simultaneously exhibits a large optical modulation(79.7%at 633 nm),an ultra-long cycling life(76%of original optical modulation retained after 12400 cycles),and a high areal capacitance(55.1 mF cm^(-2)at 0.1 mA cm^(-2)).Our density functional theory(DFT)calculations demonstrate that the much improved dual-functional performance is correlated to the raised electronic conductivity and ion adsorption at the W_(17)O_(47)/(NaWO_(3)nanoknots)interface,together with the ion adsorption of PEDOT:PSS in the 3D-knotted architecture.As a proof-of-concept application,different-sized flexible dual-functional electrochromic/electrochemical devices(FDEDs)were assembled and investigated for various application scenarios,including a smart window(15 cm×10 cm),a wearable wristband(20 cm×2.5 cm),and a smart eyeglass.The smart window made of the FDED enables a large temperature difference of 27.6℃ confirm-tested in model houses,where the energy source also powers three light-emitting diodes(LEDs).The understandings of the key governing principles in the electrodes and dual-functionalities provide a timely foundation for the new generation flexible multifunctional devices.
基金Key Research and Development Program of Shaanxi,Grant/Award Number:2020KWZ-001Innovation Foundation for Doctoral Dissertation of Northwestern Polytechnical University,Grant/Award Number:CX2021042National Natural Science Foundation of China,Grant/Award Number:51902265。
文摘Fiber-shaped integrated devices are highly desirable for wearable and portable smart electronics,owing to their merits of lightweight,high flexibility,and wearability.However,how to effectively employ multifunctional fibers in one integrated device that can simultaneously achieve energy storage and utilization is a major challenge.Herein,a set of multifunctional fibers all derived from vanadium metal-organic framework nanowires grown on carbon nanotube fiber(V-MOF NWs@CNT fiber)is demonstrated,which can be used for various energy storage and utilization applications.First,a fiber-shaped asymmetric supercapacitor(FASC)is fabricated based on the CoNi-layered double hydroxide nanosheets@vanadium oxide NWs@CNT fiber(CoNi-LDH NSs@V2O5 NWs@CNT fiber)as the positive electrode and vanadium nitride(VN)NWs@CNT fiber as the negative electrode.Benefiting from the outstanding compatibility of the functional materials,the FASC with a maximum working voltage of 1.7 V delivers a high-stack volumetric energy density of 11.27 mW·h/cm3.Then,a fiber-shaped integrated device is assembled by twisting a fiber-shaped piezoresistive sensor(FPS;VN NWs@CNT fiber also served as the highly sensitive material)and a FASC together,where the highperformance FASC can provide a stable and continuous output power for the FPS.Finally,the S-VOx NWs@CNT fiber(sulfur-doped vanadium oxide)electrode shows promising electrocatalytic performance for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),which is further constructed into a self-driven water-splitting unit with the integration of the FASCs.The present work demonstrates that the V-MOF NWs@CNTderived fibers have great potential for constructing wearable multifunctional integrated devices.
基金supported by the research grants from National Natural Science Foundation of China(52103057)Natural Science Foundation of Shandong Province,China(ZR2019BEM001)China Postdoctoral Science Foundation(2018M630745).
文摘Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating high-performance hybrid electrodes for supercapacitors.However,multistep reactions are usually required to obtain these multicomponent systems,thus giving rise to the complicated and time-consuming issues.Herein,we for the first time,demonstrate a green one-pot method to anchor coaxial double-layer MnO_(2)/Ni(OH)_(2)nanosheets on electrospun carbon nanofibers(CNFs)(denoted as MNC),where the intermediate MnO_(2)layer serves as the“nanoglue”to couple the vertically aligned Ni(OH)_(2)nanosheets and conductive CNFs.Benefiting from the unique chemical composition and hierarchical architecture,the resultant electrode delivers outstanding electrochemical performance,including an excellent specific capacitance(1133.3 F g^(-1)at 1 A g^(-1))and an ultrahigh rate capability(844.4 F g^(-1)at 20 A g^(-1)).Moreover,the asymmetric supercapacitor assembled by using the MNC as positive electrode and the CNF as negative electrode can achieve an optimal energy density of 35.1 Wh kg^(-1)and a maximum power density of 8000 W kg^(-1).The one-pot strategy that stabilizes electroactive metal hydroxides on conductive carbons using a MnO_(2)“nanoglue”to design advanced hybrid electrodes is expected to be broadly applicable not only to the supercapacitor technology but also to other electrochemical applications.