Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
Dear Editor,In the adult brain,the transition from neural stem cell(NSC)quiescence to activation is a focal regulatory point for neural regeneration and dysregulations in the transition lead to brain disorders.1,2 Dur...Dear Editor,In the adult brain,the transition from neural stem cell(NSC)quiescence to activation is a focal regulatory point for neural regeneration and dysregulations in the transition lead to brain disorders.1,2 During this transition,both cell cycle states and metabolism including mitochondria undergo extensive reprogramming.A deep understanding of such comprehensive changes is a prerequisite for a holistic picture of physiology and may aid disease combats.展开更多
Malignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates,resistance to combined therapy,and dismal prognosis.Glioma stem cells(GSCs)are likely responsible for ...Malignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates,resistance to combined therapy,and dismal prognosis.Glioma stem cells(GSCs)are likely responsible for tumor progression,resistance to therapy,recurrence,and poor prognosis owing to their high self-renewal and tumorigenic potential.As a family member of BMP signaling,bone morphogenetic protein4(BMP4)has been reported to induce the differentiation of GSCs and neural stem cells(NSCs).However,the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear.In this study,we treated hGSCs and hNSCs with BMP4 and com-pared the phenotypic and transcriptional changes between these two cell types.Phenotypically,we found that the growth of hGSCs was greatly inhibited by BMP4,but the same treatment only increased the cell size of hNSCs.While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs,the profiles of differentially expressed genes were distinct between the two groups.A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture.Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation.Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.展开更多
Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential.The main reason is that malignant glioma holds key cluster cells,glioma stem cells(GSCs).GSCs contribute to tum...Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential.The main reason is that malignant glioma holds key cluster cells,glioma stem cells(GSCs).GSCs contribute to tumorigenesis,tumor progression,recurrence,and treatment resistance.Interferon-beta(IFN-β)is well known for its anti-proliferative efficacy in diverse cancers.IFN-βalso displayed potent antitumor effects in malignant glioma.IFN-βaffect both GSCs and Neural stem cells(NSCs)in the treatment of gliomas.However,the functional comparison,similar or different effects of IFN-βon GSCs and NSCs are rarely reported.Here,we studied the similarities and differences of the responses to IFN-βbetween human GSCs and normal NSCs.We found that IFN-βpreferentially inhibited GSCs over NSCs.The cell body and nucleus size of GSCs increased after IFN-βtreatment,and the genomic analysis revealed the enrichment of the upregulated immune response,cell adhesion genes and down regulated cell cycle,ribosome pathways.Several typical cyclin genes,including cyclin A2(CCNA2),cyclin B1(CCNB1),cyclin B2(CCNB2),and cyclin D1(CCND1),were significantly downregulated in GSCs after IFN-βstimulation.We also found that continuous IFN-βstimulation after passage further enhanced the inhibitory effect.Our study revealed how genetic diversity resulted in differential effects in response to IFN-βtreatment.These results may contribute to improve the applications of IFN-βin anti-cancer immunotherapy.In addition,these results may also help to design more effective pharmacological strategies to target cancer stem cells while protecting normal neural stem cells.展开更多
Adipose-derived stem cells (ADSCs) assume essential roles intissue homeostasis and aging and have been explored as regenera-tive therapies for a broad range of diseases including physiologicaland pathological aging ...Adipose-derived stem cells (ADSCs) assume essential roles intissue homeostasis and aging and have been explored as regenera-tive therapies for a broad range of diseases including physiologicaland pathological aging [1 ]. These multipotent cells are plastic, cap-able to differentiate and transdifferentiate to a range of cell types[2]. With aging, diseases and inundergo cellular senescence [3].vitro passing, ADSCs decline andFor therapies, typically cells fromyoung adults before 5-8 passages should be used, posing majorobstacles for conditions requiring much more cells [4].展开更多
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金This work was supported by funds from the National Key R&D Program of China(2019YFA0110300,2017YFA0104100)Shanghai Easter Scholar(8101219003)to Z.L.G.+2 种基金the National Natural Science Foundation of China(31600819 to C.H.C.,81773302 to Y.T.F.,31571058 and 32070862 to Z.L.G.,31701282 to M.J.,and 81901031 to X.X.H.)Shanghai Municipal Planning Commission of science and Research Fund(20174Y0216)to C.C.H.the Natural Science Foundation of Shanghai(19ZR1445400)to X.X.H.
文摘Dear Editor,In the adult brain,the transition from neural stem cell(NSC)quiescence to activation is a focal regulatory point for neural regeneration and dysregulations in the transition lead to brain disorders.1,2 During this transition,both cell cycle states and metabolism including mitochondria undergo extensive reprogramming.A deep understanding of such comprehensive changes is a prerequisite for a holistic picture of physiology and may aid disease combats.
基金This work was supported by funds from the National Natural Science Foundation of China(32070862 and 31571058 to ZG,81901031 to XXH and 31600819 to CC)National Key R&D Program of China(2019YFA0110300)to ZG+2 种基金the Natural Science Foundation of Shanghai(19ZR1445400)to XXHthe Shanghai Municipal Planning Commission of Science and Research Fund(20174Y0216)to CCthe Shanghai Easter Scholar(8101219003)to ZG.
文摘Malignant glioma is a highly heterogeneous and invasive primary brain tumor characterized by high recurrence rates,resistance to combined therapy,and dismal prognosis.Glioma stem cells(GSCs)are likely responsible for tumor progression,resistance to therapy,recurrence,and poor prognosis owing to their high self-renewal and tumorigenic potential.As a family member of BMP signaling,bone morphogenetic protein4(BMP4)has been reported to induce the differentiation of GSCs and neural stem cells(NSCs).However,the molecular mechanisms underlying the BMP4-mediated effects in these two cell types are unclear.In this study,we treated hGSCs and hNSCs with BMP4 and com-pared the phenotypic and transcriptional changes between these two cell types.Phenotypically,we found that the growth of hGSCs was greatly inhibited by BMP4,but the same treatment only increased the cell size of hNSCs.While the RNA sequencing results showed that BMP4 treatment evoked significantly transcriptional changes in both hGSCs and hNSCs,the profiles of differentially expressed genes were distinct between the two groups.A gene set that specifically targeted the proliferation and differentiation of hGSCs but not hNSCs was enriched and then validated in hGSC culture.Our results suggested that hGSCs and hNSCs responded differently to BMP4 stimulation.Understanding and investigating different responses between hGSCs and hNSCs will benefit finding partner factors working together with BMP4 to further suppress GSCs proliferation and stemness without disturbing NSCs.
基金This work was supported by funds from the National Natural Science Foundation of China[31600819 to CCH,81901031 to HXX,32070862 and 31571058 to GZL]the Shanghai Municipal Population and Family Planning Commission[20174Y0216 to CCH]+2 种基金the Natural Science Foundation of Shanghai[19ZR1445400 to HXX]the National Key R&D Program of China[2019YFA0110300]the Shanghai Easter Scholar[8101219003 to GZL].
文摘Malignant Glioma is characterized by strong self-renewal potential and immature differentiation potential.The main reason is that malignant glioma holds key cluster cells,glioma stem cells(GSCs).GSCs contribute to tumorigenesis,tumor progression,recurrence,and treatment resistance.Interferon-beta(IFN-β)is well known for its anti-proliferative efficacy in diverse cancers.IFN-βalso displayed potent antitumor effects in malignant glioma.IFN-βaffect both GSCs and Neural stem cells(NSCs)in the treatment of gliomas.However,the functional comparison,similar or different effects of IFN-βon GSCs and NSCs are rarely reported.Here,we studied the similarities and differences of the responses to IFN-βbetween human GSCs and normal NSCs.We found that IFN-βpreferentially inhibited GSCs over NSCs.The cell body and nucleus size of GSCs increased after IFN-βtreatment,and the genomic analysis revealed the enrichment of the upregulated immune response,cell adhesion genes and down regulated cell cycle,ribosome pathways.Several typical cyclin genes,including cyclin A2(CCNA2),cyclin B1(CCNB1),cyclin B2(CCNB2),and cyclin D1(CCND1),were significantly downregulated in GSCs after IFN-βstimulation.We also found that continuous IFN-βstimulation after passage further enhanced the inhibitory effect.Our study revealed how genetic diversity resulted in differential effects in response to IFN-βtreatment.These results may contribute to improve the applications of IFN-βin anti-cancer immunotherapy.In addition,these results may also help to design more effective pharmacological strategies to target cancer stem cells while protecting normal neural stem cells.
基金financially supported by the National Natural Science Foundation of China(31571058,31371497)the Ministry of Science and Technology of China(2016YFE0107200)Shanghai Easter Scholar(8101219003 Start-up funds from Tongji University School of Medicine and Shanghai Tenth People’s Hospital)
文摘Adipose-derived stem cells (ADSCs) assume essential roles intissue homeostasis and aging and have been explored as regenera-tive therapies for a broad range of diseases including physiologicaland pathological aging [1 ]. These multipotent cells are plastic, cap-able to differentiate and transdifferentiate to a range of cell types[2]. With aging, diseases and inundergo cellular senescence [3].vitro passing, ADSCs decline andFor therapies, typically cells fromyoung adults before 5-8 passages should be used, posing majorobstacles for conditions requiring much more cells [4].