The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLAR...The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.展开更多
The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier trans...The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.展开更多
The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model ...The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.展开更多
The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calcu...The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.展开更多
The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi's theorem and the Schmidt method.The problem was formulated thro...The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi's theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the effects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.展开更多
An attempt has been made here to evaluate the effect of thermal exposure on the mechanical behavior and failure mechanisms of carbon fiber composite sandwich panel with pyramidal truss core under axial compression. An...An attempt has been made here to evaluate the effect of thermal exposure on the mechanical behavior and failure mechanisms of carbon fiber composite sandwich panel with pyramidal truss core under axial compression. Analytical formulae for the collapse strength of composite sandwich panel after thermal exposure were derived. Axial compression tests of composite laminates and sandwich panels after thermal exposure were conducted at room temperature to assess the degradation caused by the thermal exposure. Experimental results showed that the failure of sandwich panel are not only temperature dependent, but are time dependent as well. The decrease in residual compressive strength is mainly attributed to the degradation of the matrix and the degradation of fiber-matrix interface, as well as the formation of cracks and pores when specimens are exposed to high temperature. The measured failure loads obtained in the experiments showed reasonable agreement with the analytical predictions.展开更多
文摘The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.11272105 and 11572101)
文摘The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Heilongjiang Province Science Foundation for Youths(Grant No.QC2015003)the Harbin Science and Technology Bureau Young Talent Reserve Project(Grant No.RC2016QN001011,RC2016QN017023)
文摘The testing on the bearing strength of single-shear bolt jointed composite laminates structure is done.And the effect of the fixture on the testing results is analyzed. Then a macro-micro multi-scale analytical model combined with the improved"Generalized Method of Cells( GMC) "is developed,which is used to predict the macro bearing strength and to characterize the micro constitute material failure of the bolt jointed composite laminates structure. Both the contact conditions at the bolt/hole boundary and the contact conditions at the specimen/fixture boundary,progressive damage,and the material properties degradation are all taken account into the analytical model. Thus,the numerical simulation results agree well with the experimental results.Finally,the effect of the fixture on the testing results is characterized. The results show that the incomplete contaction between the fixture and the specimen or the lack of the lateral constraint on the specimen will affect the limited bearing strength and the offset bearing strength of the bolt jointed composite laminates structure. In addition,the lower support rigid of the fixture will affect the rigid of the bolt jointed composite laminates structure.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272105)the Joint Construction Project of HIT and Weihai(Grant No.2013DXGJ02)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2015109)
文摘The restriction width of carcass by the belts( RWCB) as an important parameter of radial tire design has been neglected for a long time. In order to improve the accuracy and efficiency of tire profile design,the calculating method of RWCB is proposed. The equilibrium profile is calculated by geometric model and variational approach,based on it,the predicted model of RWCB is developed for tire design. Finally,four different designs of 12R22.5 tires are investigated by experiment and finite element method,which is used to validate the accuracy of the theoretical method. Results indicate that experimental and finite element analysis results are found to be in good agreement with theoretical results; linear relationships are existed between the cord length and RWCB,and also existed between the position of belt and RWCB; tires designed by the methods have smaller and more uniform displacement,so the method can be used for tire optimized design.
基金supported by the National Natural Science Foundation of China(Nos.11272105 and 11222216)the NaturalScience Foundation with Excellent Young Investigators of Heilongjiang Province(No.JC04-08)+1 种基金the Research Fund for theDoctoral Program of Higher Education of China(No.20092302110006)the Natural Science Foundation of HeilongjiangProvince(No.A2007-05)
文摘The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi's theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the effects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.
基金financial support of the project from the Major State Basic Research Development Program of China (No. 2011CB610303)the National Natural Science Foundation of China (Nos. 90816024 and 11272105)the Research Fund for the Doctoral Program of Higher Education of China (No. 20092302110006)
文摘An attempt has been made here to evaluate the effect of thermal exposure on the mechanical behavior and failure mechanisms of carbon fiber composite sandwich panel with pyramidal truss core under axial compression. Analytical formulae for the collapse strength of composite sandwich panel after thermal exposure were derived. Axial compression tests of composite laminates and sandwich panels after thermal exposure were conducted at room temperature to assess the degradation caused by the thermal exposure. Experimental results showed that the failure of sandwich panel are not only temperature dependent, but are time dependent as well. The decrease in residual compressive strength is mainly attributed to the degradation of the matrix and the degradation of fiber-matrix interface, as well as the formation of cracks and pores when specimens are exposed to high temperature. The measured failure loads obtained in the experiments showed reasonable agreement with the analytical predictions.