Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure ...Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure the reliability and determinism of system execution,a flexible real-time control system architecture and interaction algorithm are required.The ROS framework was designed to improve the reusability of robotic software development by providing a distributed structure,hardware abstraction,message-passing mechanism,and application prototypes.Rich ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux system.However,because of the fairness scheduling principle of the default Linux system design and the complexity of the kernel,the system does not have real-time computing.To achieve a balance between real-time and non-real-time computing,this paper uses the transmission mechanism of ROS2,combines it with the scheduling mechanism of the Linux operating system,and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2.The real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives,including throughput,transmission mode,QoS service quality,frequency,number of subscription nodes and EtherCAT master.This paper makes two significant contributions:firstly,it employs Preempt_RT to optimize the native ROS2 system,effectively enhancing the real-time performance of native ROS2 message transmission;secondly,it conducts a comprehensive evaluation of the real-time performance of both native and optimized ROS2 systems.This comparison elucidates the benefits of the optimized ROS2 architecture regarding real-time performance,with results vividly demonstrated through illustrative figures.展开更多
The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhil...The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhile,ink with high permeability might facilitate uniform cell growth in biological constructs,which is beneficial to homogeneous tissue repair.Unfortunately,current bioinks are hard to meet these requirements simultaneously in a simple way.Here,based on the fast dynamic crosslinking of aldehyde hyaluronic acid(AHA)/N-carboxymethyl chitosan(CMC)and the slow stable crosslinking of gelatin(GEL)/4-arm poly(ethylene glycol)succinimidyl glutarate(PEG-SG),we present a time-sharing structure-supporting(TSHSP)hydrogel bioink with high permeability,containing 1%AHA,0.75%CMC,1%GEL and 0.5%PEG-SG.The TSHSP hydrogel can facilitate printing with proper viscoelastic property and self-healing behavior.By crosslinking with 4%PEG-SG for only 3 min,the integrity of the cell-laden construct can last for 21 days due to the stable internal and external GEL/PEG-SG networks,and cells manifested long-term viability and spreading morphology.Nerve-like,muscle-like,and cartilage-like in vitro constructs exhibited homogeneous cell growth and remarkable biological specificities.This work provides not only a convenient and practical bioink for tissue engineering,targeted cell therapy,but also a new direction for hydrogel bioink development.展开更多
Both of the long-term fidelity and cell viability of three-dimensional(3D)-bioprinted constructs are essential to precise soft tissue repair.However,the shrinking/swelling behavior of hydrogels brings about inadequate...Both of the long-term fidelity and cell viability of three-dimensional(3D)-bioprinted constructs are essential to precise soft tissue repair.However,the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs,and bioinks containing excessive polymer are detrimental to cell viability.Here,we obtained a facile hydrogel by introducing 1%aldehyde hyaluronic acid(AHA)and 0.375%N-carboxymethyl chitosan(CMC),two polysaccharides with strong water absorption and water retention capacity,into classic gelatin(GEL,5%)–alginate(ALG,1%)ink.This GEL–ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG.We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37C.The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3%calcium chloride for only 20 s.Flow cytometry results showed that the cell viability was 91.3861.55%on day 29,and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.0661.24%.This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.展开更多
Given limited terrain adaptability,most existing multirobot cooperative transportation systems(MRCTSs)mainly work on flat pavements,restricting their outdoor applications.The connectors'finite deformation capabili...Given limited terrain adaptability,most existing multirobot cooperative transportation systems(MRCTSs)mainly work on flat pavements,restricting their outdoor applications.The connectors'finite deformation capability and the control strategies'limitations are primarily responsible for this phenomenon.This study proposes a novel MRCTS based on tracked mobile robots(TMRs)to improve terrain adaptability and expand the application scenarios of MRCTSs.In structure design,we develop a novel 6-degree-of-freedom passive adaptive connector to link multiple TMRs and the transported object(the communal payload).In addition,the connector is set with sensors to measure the position and orientation of the robot with respect to the object for feedback control.In the control strategy,we present a virtual leader-physical follower collaborative paradigm.The leader robot is imaginary to describe the movement of the entire system and manage the follower robots.All the TMRs in the system act as follower robots to transport the object cooperatively.Having divided the whole control structure into the leader robot level and the follower robot level,we convert the motion control of the two kinds of robots to trajectory tracking control problems and propose a novel double closed-loop kinematics control framework.Furthermore,a control law satisfying saturation constraints is derived to ensure transportation stability.An adaptive control algorithm processes the wheelbase uncertainty of the TMR.Finally,we develop a prototype of the TMR-based MRCTS for experiments.In the trajectory tracking experiment,the developed MRCTS with the proposed control scheme can converge to the reference trajectory in the presence of initial tracking errors in a finite time.In the outdoor experiment,the proposed MRCTS consisting of four TMRs can successfully transport a payload weighing 60 kg on an uneven road with the single TMR's maximum load limited to 15 kg.The experimental results demonstrate the effectiveness of the structural design and control strategies of the TMR-based MRCTS.展开更多
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金Supported by National Key Research and Development Program of China(Grant No.2019YFB1309900)Institute for Guo Qiang,Tsinghua University of China(Grant No.2019GQG0007).
文摘Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception,force interaction,spatial obstacle avoidance,and motion planning.To ensure the reliability and determinism of system execution,a flexible real-time control system architecture and interaction algorithm are required.The ROS framework was designed to improve the reusability of robotic software development by providing a distributed structure,hardware abstraction,message-passing mechanism,and application prototypes.Rich ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux system.However,because of the fairness scheduling principle of the default Linux system design and the complexity of the kernel,the system does not have real-time computing.To achieve a balance between real-time and non-real-time computing,this paper uses the transmission mechanism of ROS2,combines it with the scheduling mechanism of the Linux operating system,and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2.The real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives,including throughput,transmission mode,QoS service quality,frequency,number of subscription nodes and EtherCAT master.This paper makes two significant contributions:firstly,it employs Preempt_RT to optimize the native ROS2 system,effectively enhancing the real-time performance of native ROS2 message transmission;secondly,it conducts a comprehensive evaluation of the real-time performance of both native and optimized ROS2 systems.This comparison elucidates the benefits of the optimized ROS2 architecture regarding real-time performance,with results vividly demonstrated through illustrative figures.
基金This work was supported by the National Natural Science Foundation of China[grant number 52075285]the Science and Technology Program of Guangzhou,China[grant number 201604040002]+1 种基金the Key-Area Research and Development Program of Guangdong Province,China[grant number 2020B090923003]the Key Research and Development Projects of People’s Liberation Army,China[grant number.BWS17J036].
文摘The ready-to-use,structure-supporting hydrogel bioink can shorten the time for ink preparation,ensure cell dispersion,and maintain the preset shape/microstructure without additional assistance during printing.Meanwhile,ink with high permeability might facilitate uniform cell growth in biological constructs,which is beneficial to homogeneous tissue repair.Unfortunately,current bioinks are hard to meet these requirements simultaneously in a simple way.Here,based on the fast dynamic crosslinking of aldehyde hyaluronic acid(AHA)/N-carboxymethyl chitosan(CMC)and the slow stable crosslinking of gelatin(GEL)/4-arm poly(ethylene glycol)succinimidyl glutarate(PEG-SG),we present a time-sharing structure-supporting(TSHSP)hydrogel bioink with high permeability,containing 1%AHA,0.75%CMC,1%GEL and 0.5%PEG-SG.The TSHSP hydrogel can facilitate printing with proper viscoelastic property and self-healing behavior.By crosslinking with 4%PEG-SG for only 3 min,the integrity of the cell-laden construct can last for 21 days due to the stable internal and external GEL/PEG-SG networks,and cells manifested long-term viability and spreading morphology.Nerve-like,muscle-like,and cartilage-like in vitro constructs exhibited homogeneous cell growth and remarkable biological specificities.This work provides not only a convenient and practical bioink for tissue engineering,targeted cell therapy,but also a new direction for hydrogel bioink development.
基金This work was supported by the following programs:the National Natural Science Foundation of China(Nos.81771239 and 52075285)the Science and Technology Program of Guangzhou,China(No.201604040002)+1 种基金the Key-Area Research and Development Program of Guangdong Province,China(No.2020B090923003)the Key Research and Development Projects of People’s Liberation Army,China(No.BWS17J036).
文摘Both of the long-term fidelity and cell viability of three-dimensional(3D)-bioprinted constructs are essential to precise soft tissue repair.However,the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs,and bioinks containing excessive polymer are detrimental to cell viability.Here,we obtained a facile hydrogel by introducing 1%aldehyde hyaluronic acid(AHA)and 0.375%N-carboxymethyl chitosan(CMC),two polysaccharides with strong water absorption and water retention capacity,into classic gelatin(GEL,5%)–alginate(ALG,1%)ink.This GEL–ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG.We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37C.The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3%calcium chloride for only 20 s.Flow cytometry results showed that the cell viability was 91.3861.55%on day 29,and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.0661.24%.This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.
基金supported by the National Natural Science Foundation of China(Grant No.52175237)Beijing Municipal Science and Technology Commission,China(Grant No.Z211100004021022).
文摘Given limited terrain adaptability,most existing multirobot cooperative transportation systems(MRCTSs)mainly work on flat pavements,restricting their outdoor applications.The connectors'finite deformation capability and the control strategies'limitations are primarily responsible for this phenomenon.This study proposes a novel MRCTS based on tracked mobile robots(TMRs)to improve terrain adaptability and expand the application scenarios of MRCTSs.In structure design,we develop a novel 6-degree-of-freedom passive adaptive connector to link multiple TMRs and the transported object(the communal payload).In addition,the connector is set with sensors to measure the position and orientation of the robot with respect to the object for feedback control.In the control strategy,we present a virtual leader-physical follower collaborative paradigm.The leader robot is imaginary to describe the movement of the entire system and manage the follower robots.All the TMRs in the system act as follower robots to transport the object cooperatively.Having divided the whole control structure into the leader robot level and the follower robot level,we convert the motion control of the two kinds of robots to trajectory tracking control problems and propose a novel double closed-loop kinematics control framework.Furthermore,a control law satisfying saturation constraints is derived to ensure transportation stability.An adaptive control algorithm processes the wheelbase uncertainty of the TMR.Finally,we develop a prototype of the TMR-based MRCTS for experiments.In the trajectory tracking experiment,the developed MRCTS with the proposed control scheme can converge to the reference trajectory in the presence of initial tracking errors in a finite time.In the outdoor experiment,the proposed MRCTS consisting of four TMRs can successfully transport a payload weighing 60 kg on an uneven road with the single TMR's maximum load limited to 15 kg.The experimental results demonstrate the effectiveness of the structural design and control strategies of the TMR-based MRCTS.