Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in ...Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in an open dump,and the accumulation of ceramic waste contributes to environmental pollution,which makes the recycling of ceramic waste quite urgent.Owing to the pozzolanic activity,excellent mechanical properties and durability,industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete.In this paper,the pozzolanic activity of ceramic waste and the workability,mechanical performance,and durability of ceramic concrete are discussed.In addition,the most recent research results pertaining to ceramic concrete are reviewed.Ground ceramic powder improves the workability,compressive strength,resistance to chloride penetration,and carbonation resistance of concrete to a certain extent.Concrete containing ceramic as the aggregate has a lower mechanical performance than ordinary concrete.However,the resistance to chloride penetration,freeze-thaw resistance,and high-temperature resistance of ceramic concrete are remarkable.Ceramic concrete is environmentally friendly,requires fewer energy resources to manufacture than ordinary concrete,and has excellent engineering properties.However,further research is required for future engineering applications.展开更多
Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known ab...Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known about genotypic variation in,and molecular mechanisms of,Pi(phosphate)uptake and storage in A.sinicus.We recorded the morphological responses of six A.sinicus cultivars from four regions of China to external Pi application and measured their Pi accumulation.We identified full-length transcripts of Pi-signaling and Pi-homeostasis regulators by sequencing and measured the expression level of these genes by qRT-PCR.The major components in Pi signaling and Pi homeostasis were largely conserved between A.sinicus and the model species rice and Arabidopsis.Different A.sinicus varieties responded differently to low-phosphorus(P)stress,and their Pi accumulation was positively correlated with the expression of vacuolar Pi influx gene(SYG1/PHO81/XPR1-MAJOR FACILITATOR SUPERFAMILY(SPX-MFS)-TYPE PROTEIN)AsSPXMFS2 and negatively correlated with the expression of the vacuolar Pi efflux gene(VACUOLAR Pi EFFLUX TRANSPORTER)AsVPE1.We identified key Pi-signaling and Pihomeostasis regulators in A.sinicus.The expression of vacuolar Pi transporter genes could be used as an index to select A.sinicus accessions with high Pi accumulation.展开更多
SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing,signaling,and transport in eukaryotes.In plants,SPXs are known to integrate cellular Pi status and negatively regulate t...SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing,signaling,and transport in eukaryotes.In plants,SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators,the PHOSPATE STARVATION RESPONSE proteins (PHRs).The stability of SPXs,such as SPX4,is reduced under Pi-deficient conditions.However,the mechanisms by which SPXs are degraded remain unclear.In this study,using a yeast-twhybrid screen we iden.tified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation,designated SDEL1 and SDEL2,which were post-transcriptionally induced by Pi starvation.We found that both SDELs were located in the nucleus and cytoplasm,had ubiquitin E3 ligase activity,and directly ubiquitinated the K^213 and K^299 lysine residues in SPX4 to regulate its stability.Furthermore,we found that PHR2,a Pi central regulator in rice,could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions,which protected SPX4 from ubiquitination and degradation.Consistent with the biochemical function of SDEL1 and SDEL2,overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions.Conversely,their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling.Collectively,our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.展开更多
Phosphorous(P)and iron(Fe),two essential nutrients for plant growth and development,are highly abundant elements in the earth's crust but often display low availability to plants.Due to the ability to form insolub...Phosphorous(P)and iron(Fe),two essential nutrients for plant growth and development,are highly abundant elements in the earth's crust but often display low availability to plants.Due to the ability to form insoluble complexes,the antagonistic interaction between P and Fe nutrition in plants has been noticed for decades.However,the underlying molecular mechanism modulating the signaling and homeostasis between them re-mains obscure.Here,we show that the possible iron sensors HRZs,the iron deficiency-induced E3 ligases,could interact with the central regulator of phosphate(Pi)signaling,PHR2,and prompt its ubiquitination at lysine residues K319 and K328,leading to its degradation in rice.Consistent with this,the hrzs mutants dis-played a high Pi accumulation phenotype.Furthermore,we found that iron deficiency could attenuate Pi star-vation signaling by inducing the expression of HRZs,which in turn trigger PHR2 protein degradation.Inter-estingly,on the other hand,rice PHRs could negatively regulate the expression of HRZs to modulate iron deficiency responses.Therefore,PHR2 and HRZs form a reciprocal inhibitory module to coordinate Pi and iron signaling and homeostasis in rice.Taken together,our results uncover a molecular link between Pi and iron master regulators,which fine-tunes plant adaptation to Pi and iron availability in rice.展开更多
基金support received from Natural Science Foundation of Henan(Grant No.212300410018)National Natural Science Foundation of China(Grant No.U2040224)+1 种基金Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009)the Research and Develop Project of China Construction Seventh Engineering Division Co.,Ltd.(Grant No.CSCEC7b-2021-Z-11).
文摘Green and sustainable concrete has attracted significant attention from the construction industry and researchers since it was proposed.The ceramic waste materials are often directly buried in the ground or placed in an open dump,and the accumulation of ceramic waste contributes to environmental pollution,which makes the recycling of ceramic waste quite urgent.Owing to the pozzolanic activity,excellent mechanical properties and durability,industrial ceramic waste is considered as a suitable substitute for cement or natural aggregates to fabricate renewable concrete.In this paper,the pozzolanic activity of ceramic waste and the workability,mechanical performance,and durability of ceramic concrete are discussed.In addition,the most recent research results pertaining to ceramic concrete are reviewed.Ground ceramic powder improves the workability,compressive strength,resistance to chloride penetration,and carbonation resistance of concrete to a certain extent.Concrete containing ceramic as the aggregate has a lower mechanical performance than ordinary concrete.However,the resistance to chloride penetration,freeze-thaw resistance,and high-temperature resistance of ceramic concrete are remarkable.Ceramic concrete is environmentally friendly,requires fewer energy resources to manufacture than ordinary concrete,and has excellent engineering properties.However,further research is required for future engineering applications.
基金supported by the China Agriculture Research System-Green Manure(CARS-22)the Innovation Program of Chinese Academy of Agricultural Sciences。
文摘Astragalus sinicus is a commonly used legume green manure that fixes atmospheric N2 and accumulates mineral nutrients and organic substances that are beneficial to soils and subsequent crops.However,little is known about genotypic variation in,and molecular mechanisms of,Pi(phosphate)uptake and storage in A.sinicus.We recorded the morphological responses of six A.sinicus cultivars from four regions of China to external Pi application and measured their Pi accumulation.We identified full-length transcripts of Pi-signaling and Pi-homeostasis regulators by sequencing and measured the expression level of these genes by qRT-PCR.The major components in Pi signaling and Pi homeostasis were largely conserved between A.sinicus and the model species rice and Arabidopsis.Different A.sinicus varieties responded differently to low-phosphorus(P)stress,and their Pi accumulation was positively correlated with the expression of vacuolar Pi influx gene(SYG1/PHO81/XPR1-MAJOR FACILITATOR SUPERFAMILY(SPX-MFS)-TYPE PROTEIN)AsSPXMFS2 and negatively correlated with the expression of the vacuolar Pi efflux gene(VACUOLAR Pi EFFLUX TRANSPORTER)AsVPE1.We identified key Pi-signaling and Pihomeostasis regulators in A.sinicus.The expression of vacuolar Pi transporter genes could be used as an index to select A.sinicus accessions with high Pi accumulation.
基金funded by grants from the National Key Research and Development Program of China (2016YFD0100705-1)the National Natural Science Foundation of China (31801925,31772386,and 31601807)+1 种基金Ningbo Department of Science and Technology (2016C11017)KY was supported by the Innovation Program of Chinese Academy of Agricultural Sciences.
文摘SPX-domain-containing proteins (SPXs) play an important role in inorganic phosphate (Pi) sensing,signaling,and transport in eukaryotes.In plants,SPXs are known to integrate cellular Pi status and negatively regulate the activity of Pi central regulators,the PHOSPATE STARVATION RESPONSE proteins (PHRs).The stability of SPXs,such as SPX4,is reduced under Pi-deficient conditions.However,the mechanisms by which SPXs are degraded remain unclear.In this study,using a yeast-twhybrid screen we iden.tified two RING-finger ubiquitin E3 ligases regulating SPX4 degradation,designated SDEL1 and SDEL2,which were post-transcriptionally induced by Pi starvation.We found that both SDELs were located in the nucleus and cytoplasm,had ubiquitin E3 ligase activity,and directly ubiquitinated the K^213 and K^299 lysine residues in SPX4 to regulate its stability.Furthermore,we found that PHR2,a Pi central regulator in rice,could compete with SDELs by interacting with SPX4 under Pi-sufficient conditions,which protected SPX4 from ubiquitination and degradation.Consistent with the biochemical function of SDEL1 and SDEL2,overexpression of SDEL1 or SDEL2 resulted in Pi overaccumulation and induced Pi-starvation signaling even under Pi-sufficient conditions.Conversely,their loss-of-function mutants displayed decreased Pi accumulation and reduced Pi-starvation signaling.Collectively,our study revealed that SDEL1 and SDEL2 facilitate the degradation of SPX4 to modulate PHR2 activity and regulate Pi homeostasis and Pi signaling in response to external Pi availability in rice.
基金the National Natural Science Foundation of China(31972492,31801925,31972493,and 31772386)Fundamental Research Funds for Central Non-profit Scientific Institution(1610132020001)K.Y.was supported by the Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘Phosphorous(P)and iron(Fe),two essential nutrients for plant growth and development,are highly abundant elements in the earth's crust but often display low availability to plants.Due to the ability to form insoluble complexes,the antagonistic interaction between P and Fe nutrition in plants has been noticed for decades.However,the underlying molecular mechanism modulating the signaling and homeostasis between them re-mains obscure.Here,we show that the possible iron sensors HRZs,the iron deficiency-induced E3 ligases,could interact with the central regulator of phosphate(Pi)signaling,PHR2,and prompt its ubiquitination at lysine residues K319 and K328,leading to its degradation in rice.Consistent with this,the hrzs mutants dis-played a high Pi accumulation phenotype.Furthermore,we found that iron deficiency could attenuate Pi star-vation signaling by inducing the expression of HRZs,which in turn trigger PHR2 protein degradation.Inter-estingly,on the other hand,rice PHRs could negatively regulate the expression of HRZs to modulate iron deficiency responses.Therefore,PHR2 and HRZs form a reciprocal inhibitory module to coordinate Pi and iron signaling and homeostasis in rice.Taken together,our results uncover a molecular link between Pi and iron master regulators,which fine-tunes plant adaptation to Pi and iron availability in rice.