High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional...High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.展开更多
A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize huma...A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.展开更多
The optical memory effect is an interesting phenomenon that has attracted considerable attention in recent decades. Here, we present a new physical picture of the optical memory effect, in which the memory effect and ...The optical memory effect is an interesting phenomenon that has attracted considerable attention in recent decades. Here, we present a new physical picture of the optical memory effect, in which the memory effect and the conventional spatial shift invariance are united. Based on this picture we depict the role of thickness, scattering times, and anisotropy factor and derive equations to calculate the ranges of the angular memory effect(AME) of different scattering components(ballistic light, singly scattered, doubly scattered, etc.), and hence a more accurate equation for the real AME ranges of volumetric turbid media. A conventional random phase mask model is modified according to the new picture. The self-consistency of the simulation model and its agreement with the experiment demonstrate the rationality of the model and the physical picture, which provide powerful tools for more sophisticated studies of the memory-effect-related phenomena and wavefront-sensitive techniques, such as wavefront shaping, optical phase conjugation, and optical trapping in/through scattering media.展开更多
Ghost imaging(GI)can nonlocally image objects by exploiting the fluctuation characteristics of light fields,where the spatial resolution is determined by the normalized second-order correlation function g^(2) .However...Ghost imaging(GI)can nonlocally image objects by exploiting the fluctuation characteristics of light fields,where the spatial resolution is determined by the normalized second-order correlation function g^(2) .However,the spatial shift-invariant property of g^(2) is distorted when the number of samples is limited,which hinders the deconvolution methods from improving the spatial resolution of GI.In this paper,based on prior imaging systems,we propose a preconditioned deconvolution method to improve the imaging resolution of GI by refining the mutual coherence of a sampling matrix in GI.Our theoretical analysis shows that the preconditioned deconvolution method actually extends the deconvolution technique to GI and regresses into the classical deconvolution technique for the conventional imaging system.The imaging resolution of GI after preconditioning is restricted to the detection noise.Both simulation and experimental results show that the spatial resolution of the reconstructed image is obviously enhanced by using the preconditioned deconvolution method.In the experiment,1.4-fold resolution enhancement over Rayleigh criterion is achieved via the preconditioned deconvolution.Our results extend the deconvolution technique that is only applicable to spatial shift-invariant imaging systems to all linear imaging systems,and will promote their applications in biological imaging and remote sensing for high-resolution imaging demands.展开更多
High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do no...High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do not significantly push the boundary forward.The optical diffusion limit is still a ceiling.In this work,we propose that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras and the corresponding speckle pattern as a superposition of randomly shifted pinhole images.The concept is demonstrated through both simulation and experiments,confirming the new perspective to interpret the mechanism of information transmission through scattering media under incoherent illumination.We also analyze the efficiency of single-pinhole and dual-pinhole channels.While in infancy,the proposed method reveals a new perspective to understand imaging and information transmission through scattering media.展开更多
The resolution of a conventional imaging system based on first-order field correlation can be directly obtained from the optical transfer function. However, it is challenging to determine the resolution of an imaging ...The resolution of a conventional imaging system based on first-order field correlation can be directly obtained from the optical transfer function. However, it is challenging to determine the resolution of an imaging system through random media, including imaging through scattering media and imaging through randomly inhomogeneous media, since the point-to-point correspondence between the object and the image plane in these systems cannot be established by the first-order field correlation anymore. In this Letter, from the perspective of ghost imaging, we demonstrate for the first time, to the best of our knowledge, that the point-to-point correspondence in these imaging systems can be quantitatively recovered from the second-order correlation of light fields, and the imaging capability, such as resolution, of such imaging schemes can thus be derived by analyzing second-order autocorrelation of the optical transfer function. Based on this theoretical analysis, we propose a lensless Wiener–Khinchin telescope based on second-order spatial autocorrelation of thermal light, which can acquire the image of an object by a snapshot via using a spatial random phase modulator. As an incoherent imaging approach illuminated by thermal light, the lensless Wiener–Khinchin telescope can be applied in many fields such as X-ray astronomical observations.展开更多
Imaging through scattering media via speckle autocorrelation is a popular method based on the optical memory effect.However,it fails if the amount of valid information acquired is insufficient due to a limited sensor ...Imaging through scattering media via speckle autocorrelation is a popular method based on the optical memory effect.However,it fails if the amount of valid information acquired is insufficient due to a limited sensor size.In this Letter,we reveal a relationship between the detector and object sizes for the minimum requirement to ensure image reconstruction by defining a sampling ratio R,and propose a method to enhance the image quality at a small R by capturing multiple frames of speckle patterns and piecing them together.This method will be helpful in expanding applications of speckle autocorrelation to remote sensing,underwater probing,and so on.展开更多
Snapshot spectral ghost imaging,which can acquire dynamic spectral imaging information in the field of view,has attracted increasing attention in recent years.Studies have shown that optimizing the fluctuation of ligh...Snapshot spectral ghost imaging,which can acquire dynamic spectral imaging information in the field of view,has attracted increasing attention in recent years.Studies have shown that optimizing the fluctuation of light fields is essential for improving the sampling efficiency and reconstruction quality of ghost imaging.However,the optimization of broadband light fields in snapshot spectral ghost imaging is challenging because of the dispersion of the modulation device.In this study,by judiciously introducing a hybrid refraction/diffraction structure into the light-field modulation,snapshot spectral ghost imaging with broadband super-Rayleigh speckles was demonstrated.The simulation and experiment results verified that the contrast of speckles in a broad range of wavelengths was significantly improved,and the imaging system had superior noise immunity.展开更多
Recently,the requirement for cooling capacity decreased when the driving energy changed from liquid fuel to lithium batteries.Therefore,the structure and location of the forecabin could be adjusted based on the aerody...Recently,the requirement for cooling capacity decreased when the driving energy changed from liquid fuel to lithium batteries.Therefore,the structure and location of the forecabin could be adjusted based on the aerody-namic performance.The current study conducted a significant number of simulations in order to find out the effects of the internal flow through forecabin in an Ahmed body.The following conclusions have been identi-fied:1,The flow through the forecabin would always increase the resistance of the entire body,and the drag coefficient increases,on average,by approximately 85%.2,When the aspect ratio is higher or the position of the inlet opening is lower,the total drag coefficient is lower due to a weaker vortex strength,a simpler vortex structure and a relatively simple flow.3,The existence of the forecabin will largely increase the oscillation fre-quency of the flow field by approximately 15 times compared to the original Ahmed model.Finally,the high drag coefficient moment always appears to be due to the formation of more complex or intense vortex motion.These conclusions can offer useful results and references for the structural design of the front cabin for new energy vehicles.展开更多
An effective nonrigid image registrationmethod is developed based on the optical flow field(OFF)framework for the complex registration of structure images.In our method,a new force is modeled and integrated into the o...An effective nonrigid image registrationmethod is developed based on the optical flow field(OFF)framework for the complex registration of structure images.In our method,a new force is modeled and integrated into the original optical flow equation to jointly drive the motion direction of pixels.At any point in the offset field,in addition to the force generated by the OFF model derived from local gradient information to drive the pixels in the floating image to infiltrate into the reference pixel set,a new“guiding force”derived from the global grayscale overall trend in a given neighborhood system helps the pixels to more properly spread into the corresponding reference pixel set,particularly when the gradient field of the reference image is unstable.In the experiment,a data set containing several images with complex structures was employed to validate the performance of our registration model.The test results show that our method can quickly and efficiently register complex images and is robust to noise in images.展开更多
We propose a systematic analysis of the neglected spectral bias in the frequency domain in this paper.Traditional generative adversarial networks(GANs)try to fulfill the details of images by designing specific network...We propose a systematic analysis of the neglected spectral bias in the frequency domain in this paper.Traditional generative adversarial networks(GANs)try to fulfill the details of images by designing specific network architectures or losses,focusing on generating visually qualitative images.The convolution theorem shows that image processing in the frequency domain is parallelizable and performs better and faster than that in the spatial domain.However,there is little work about discussing the bias of frequency features between the generated images and the real ones.In this paper,we first empirically demonstrate the general distribution bias across datasets and GANs with different sampling methods.Then,we explain the causes of the spectral bias through the deduction that reconsiders the sampling process of the GAN generator.Based on these studies,we provide a low-spectral-bias hybrid generative model to reduce the spectral bias and improve the quality of the generated images.展开更多
基金supported by National Natural Foundation of China(Grant No.61991454)the project of CAS Interdisciplinary Innovation Team。
文摘High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
基金supported by the National Natural Science Foundation of China(61403422,61273102)the Hubei Provincial Natural Science Foundation of China(2015CFA010)+1 种基金the Ⅲ Project(B17040)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)
文摘A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.
基金National Key Research and Development Program of China Stem Cell and Translational Research(2016YFC0100602)
文摘The optical memory effect is an interesting phenomenon that has attracted considerable attention in recent decades. Here, we present a new physical picture of the optical memory effect, in which the memory effect and the conventional spatial shift invariance are united. Based on this picture we depict the role of thickness, scattering times, and anisotropy factor and derive equations to calculate the ranges of the angular memory effect(AME) of different scattering components(ballistic light, singly scattered, doubly scattered, etc.), and hence a more accurate equation for the real AME ranges of volumetric turbid media. A conventional random phase mask model is modified according to the new picture. The self-consistency of the simulation model and its agreement with the experiment demonstrate the rationality of the model and the physical picture, which provide powerful tools for more sophisticated studies of the memory-effect-related phenomena and wavefront-sensitive techniques, such as wavefront shaping, optical phase conjugation, and optical trapping in/through scattering media.
基金National Key Research and Development Program of China(2017YFB0503303)National Natural Science Foundation of China(61991454,11627811,61971146)+1 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)Open Project of Chinese Academy of Sciences.
文摘Ghost imaging(GI)can nonlocally image objects by exploiting the fluctuation characteristics of light fields,where the spatial resolution is determined by the normalized second-order correlation function g^(2) .However,the spatial shift-invariant property of g^(2) is distorted when the number of samples is limited,which hinders the deconvolution methods from improving the spatial resolution of GI.In this paper,based on prior imaging systems,we propose a preconditioned deconvolution method to improve the imaging resolution of GI by refining the mutual coherence of a sampling matrix in GI.Our theoretical analysis shows that the preconditioned deconvolution method actually extends the deconvolution technique to GI and regresses into the classical deconvolution technique for the conventional imaging system.The imaging resolution of GI after preconditioning is restricted to the detection noise.Both simulation and experimental results show that the spatial resolution of the reconstructed image is obviously enhanced by using the preconditioned deconvolution method.In the experiment,1.4-fold resolution enhancement over Rayleigh criterion is achieved via the preconditioned deconvolution.Our results extend the deconvolution technique that is only applicable to spatial shift-invariant imaging systems to all linear imaging systems,and will promote their applications in biological imaging and remote sensing for high-resolution imaging demands.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0100602)National Natural Science Foundation of China(Grant Nos.81930048,81671726,and 81627805)+2 种基金Guangdong Science and Technology Commission(Grant Nos.2019BT02X105,and 2019A1515011374)Hong Kong Research Grant Council(Grant Nos.15217721,R5029-19,and C7074-21GF)Hong Kong Innovation and Technology Commission(Grant Nos.GHP/043/19SZ and GHP/044/19GD).
文摘High-resolution optical imaging through or within thick scattering media is a long sought after yet unreached goal.In the past decade,the thriving technique developments in wavefront measurement and manipulation do not significantly push the boundary forward.The optical diffusion limit is still a ceiling.In this work,we propose that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras and the corresponding speckle pattern as a superposition of randomly shifted pinhole images.The concept is demonstrated through both simulation and experiments,confirming the new perspective to interpret the mechanism of information transmission through scattering media under incoherent illumination.We also analyze the efficiency of single-pinhole and dual-pinhole channels.While in infancy,the proposed method reveals a new perspective to understand imaging and information transmission through scattering media.
基金supported by the National Key Research and Development Program of China (No. 2017YFB0503303)the Hi-Tech Research and Development Program of China (Nos. 2013AA122902 and 2013AA122901)
文摘The resolution of a conventional imaging system based on first-order field correlation can be directly obtained from the optical transfer function. However, it is challenging to determine the resolution of an imaging system through random media, including imaging through scattering media and imaging through randomly inhomogeneous media, since the point-to-point correspondence between the object and the image plane in these systems cannot be established by the first-order field correlation anymore. In this Letter, from the perspective of ghost imaging, we demonstrate for the first time, to the best of our knowledge, that the point-to-point correspondence in these imaging systems can be quantitatively recovered from the second-order correlation of light fields, and the imaging capability, such as resolution, of such imaging schemes can thus be derived by analyzing second-order autocorrelation of the optical transfer function. Based on this theoretical analysis, we propose a lensless Wiener–Khinchin telescope based on second-order spatial autocorrelation of thermal light, which can acquire the image of an object by a snapshot via using a spatial random phase modulator. As an incoherent imaging approach illuminated by thermal light, the lensless Wiener–Khinchin telescope can be applied in many fields such as X-ray astronomical observations.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences,the Defense Industrial Technology Development Program of China(No.D040301)the National Natural Science Foundation of China(No.61571427)。
文摘Imaging through scattering media via speckle autocorrelation is a popular method based on the optical memory effect.However,it fails if the amount of valid information acquired is insufficient due to a limited sensor size.In this Letter,we reveal a relationship between the detector and object sizes for the minimum requirement to ensure image reconstruction by defining a sampling ratio R,and propose a method to enhance the image quality at a small R by capturing multiple frames of speckle patterns and piecing them together.This method will be helpful in expanding applications of speckle autocorrelation to remote sensing,underwater probing,and so on.
文摘Snapshot spectral ghost imaging,which can acquire dynamic spectral imaging information in the field of view,has attracted increasing attention in recent years.Studies have shown that optimizing the fluctuation of light fields is essential for improving the sampling efficiency and reconstruction quality of ghost imaging.However,the optimization of broadband light fields in snapshot spectral ghost imaging is challenging because of the dispersion of the modulation device.In this study,by judiciously introducing a hybrid refraction/diffraction structure into the light-field modulation,snapshot spectral ghost imaging with broadband super-Rayleigh speckles was demonstrated.The simulation and experiment results verified that the contrast of speckles in a broad range of wavelengths was significantly improved,and the imaging system had superior noise immunity.
基金The authors would like to acknowledge the support from NSFC 91741203 which allowed the research project to be conducted.The authors also would like to acknowledge the support from NSFC-RS Joint Project under the grant number no.5151101443 and IE/151256。
文摘Recently,the requirement for cooling capacity decreased when the driving energy changed from liquid fuel to lithium batteries.Therefore,the structure and location of the forecabin could be adjusted based on the aerody-namic performance.The current study conducted a significant number of simulations in order to find out the effects of the internal flow through forecabin in an Ahmed body.The following conclusions have been identi-fied:1,The flow through the forecabin would always increase the resistance of the entire body,and the drag coefficient increases,on average,by approximately 85%.2,When the aspect ratio is higher or the position of the inlet opening is lower,the total drag coefficient is lower due to a weaker vortex strength,a simpler vortex structure and a relatively simple flow.3,The existence of the forecabin will largely increase the oscillation fre-quency of the flow field by approximately 15 times compared to the original Ahmed model.Finally,the high drag coefficient moment always appears to be due to the formation of more complex or intense vortex motion.These conclusions can offer useful results and references for the structural design of the front cabin for new energy vehicles.
基金supported in part by the National Key Research and Development Program of China under Grant no.2020YFB1806403.
文摘An effective nonrigid image registrationmethod is developed based on the optical flow field(OFF)framework for the complex registration of structure images.In our method,a new force is modeled and integrated into the original optical flow equation to jointly drive the motion direction of pixels.At any point in the offset field,in addition to the force generated by the OFF model derived from local gradient information to drive the pixels in the floating image to infiltrate into the reference pixel set,a new“guiding force”derived from the global grayscale overall trend in a given neighborhood system helps the pixels to more properly spread into the corresponding reference pixel set,particularly when the gradient field of the reference image is unstable.In the experiment,a data set containing several images with complex structures was employed to validate the performance of our registration model.The test results show that our method can quickly and efficiently register complex images and is robust to noise in images.
基金supported in part by the National Key Research and Development Program of China under Grant no.2020YFB1806403.
文摘We propose a systematic analysis of the neglected spectral bias in the frequency domain in this paper.Traditional generative adversarial networks(GANs)try to fulfill the details of images by designing specific network architectures or losses,focusing on generating visually qualitative images.The convolution theorem shows that image processing in the frequency domain is parallelizable and performs better and faster than that in the spatial domain.However,there is little work about discussing the bias of frequency features between the generated images and the real ones.In this paper,we first empirically demonstrate the general distribution bias across datasets and GANs with different sampling methods.Then,we explain the causes of the spectral bias through the deduction that reconsiders the sampling process of the GAN generator.Based on these studies,we provide a low-spectral-bias hybrid generative model to reduce the spectral bias and improve the quality of the generated images.