Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th...Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.展开更多
An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic inte...An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.展开更多
We propose and experimentally demonstrate the programmable photonic radio frequency(RF)filters based on an integrated Fabry-Pérot laser with a saturable absorber(FP-SA).Owing to the high output power and the rela...We propose and experimentally demonstrate the programmable photonic radio frequency(RF)filters based on an integrated Fabry-Pérot laser with a saturable absorber(FP-SA).Owing to the high output power and the relative flatness spectrum of the FP-SA laser,only a waveshaper and an erbium-doped fiber amplifier(EDFA)were needed,which can greatly reduce the complexity of the system.The sinc filter employed 87 taps,representing a record-high tap number and resulting in a 3-d B bandwidth of 0.27 GHz and a quality factor of 148.Furthermore,Gaussian apodization enabled the out-of-band rejection of the filter to reach 34 d B and the center frequency to be finely tuned over a wide range,spanning from 4 to 14 GHz.These results indicate that the proposed scheme could provide a promising guideline for the photonic RF filters that demand both high reconfigurability and greatly reduced size and complexity.展开更多
In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an...In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an optical combiner and additional power loss.A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth.Besides,the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase.We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB.The output power of all the channels is above 14 mW.The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers.A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels,and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation.The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing(WDM)systems,such as next-generation front-haul networks and passive optical networks.展开更多
A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB la...A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB lasers with 4×5matrix interleaving distributions,two-level cascaded Y-branch optical combiners,and one active semiconductor opticalamplifier(SOA),all in-series integrated on one chip.Unlike the traditional thermal-electric cooler(TEC)-based wavelength-tuning scheme,the tunable 4×5 REC-DFB laser array achieves a faster and broader continuous wavelength-tuningrange using TaN thin-film heaters integrated on the AlN submount.By changing the injection current of the TaN resistorfrom 0 to 190 mA,the proposed tunable laser achieves a wavelength-tuning range of∼2.5 nm per channel and a total tuningof over 50 nm.This study opens up new avenues for realizing cost-effective and wide-tuning-range semiconductor lasers.展开更多
We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of t...We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.展开更多
The accuracy and safety of pedicle screw insertion was markedly improved with the introduction of intraoperative three-dimensional navigation system during the last decade. This study aimed to evaluate the accuracy of...The accuracy and safety of pedicle screw insertion was markedly improved with the introduction of intraoperative three-dimensional navigation system during the last decade. This study aimed to evaluate the accuracy of pedicle screw placement using O-arm-based navigation system versus conventional freehand technique. Methods: We reviewed the accuracy of 341 thoracic (n = 173) and lumbosacral (n = 168) pedicle screws placed in 60 consecutive patients using either O-arm-based navigation or freehand technique in the Department of Neurosurgery of Beijing Tsinghua Changgung Hospital between January 2015 and June 2018. Patient-specific characteristics, treatment-related characteristics, and screw-specific accuracy were analyzed. The accuracy of pedicle screw placement was measured by Gertzbein-Robbins scale and screw grades A and B were clinically acceptable. Results: One hundred ninety-one screws were inserted in the O-arm-based navigation group and 150 in the freehand group. One hundred eighty-three (95.81%) clinically acceptable screws were placed in the navigation group and 135 (90.00%) in the freehand group (p = 0.034). Twenty-three (6.74%) screw revisions were performed in the two groups (8 screws in the navigation group and 15 screws in the freehand group) and significant difference was observed in thoracic spine (p = 0.018), while no statistical significance was presented in lumbosacral spine (p >0.05). Twenty-four (12.57%) screws in the navigation group and 24 (16.00%) in the freehand group violated the cortex (p > 0.05). Medial screw deviation was the most common problem in the two groups. Conclusion: The O-arm-based navigation exhibits higher accuracy for pedicle screw insertion than the freehand insertion technique.展开更多
This study explored the combined use of the O-arm and real-time navigation during spinal fixation. The clinical data for 60 patients undergoing spinal fixation, at Beijing Tsinghua Chang Gung Hospital between May 5, 2...This study explored the combined use of the O-arm and real-time navigation during spinal fixation. The clinical data for 60 patients undergoing spinal fixation, at Beijing Tsinghua Chang Gung Hospital between May 5, 2015 and May 1, 2017, were retrospectively analyzed. Pre-, intra-, and postoperative imaging findings were assessed. The patients were classified into the occipitocervical fusion(32 cases) and thoracic/lumbar/sacral spine fixation(28 cases, including 6 cases of percutaneous pedicle screw) groups. Lesion resections were performed microscopically. An O-arm, combined with real-time navigation, was used to assess spinal fixation. Efficacy was evaluated using operative times, X-ray times, screw positioning, and complications. Within the occipitocervical fusion group, 182 screws were placed in the cervical spine and 96 in the occipital bone. However, 6 screws penetrated the bone cortex and were adjacent to the vertebral arteries, based on O-arm three-dimensional imaging; therefore, the precision rate was 96.7%. Within the thoracic/lumbar/sacral spine fixation group, 148 pedicle screws were implanted, with 4 initially outside the vertebral body,yielding a precision rate of 97.3%. Ten percutaneous pedicle screws were implanted and well positioned. O-arm scans were performed 3 times/patient, with an average of 20–30 min/time. Screw implantation times were 5–7 min(cervical spine), 8–10 min(thoracic spine), and 6–8 min(lumbar spine). Intraoperative O-arm scans, combined with real-time navigation technology, allow real-time observation of screw angles and depths, improving the accuracy and safety of posterior screw fixations and reducing the radiation dose and frequency experienced by patients and surgeons.展开更多
Objectives: Ganglioneuroma is a rare, benign neurogenic tumor arising from the sympathetic ganglia. In this report, we reviewed and summarized the clinical features,treatment, and prognosis of a posterior mediastinal ...Objectives: Ganglioneuroma is a rare, benign neurogenic tumor arising from the sympathetic ganglia. In this report, we reviewed and summarized the clinical features,treatment, and prognosis of a posterior mediastinal ganglioneuroma. Case: Here, we report on a 29-year-old man referred to us with transient pain in the right side of the chest, lasting for three days. Physical examination revealed no abnormalities.The results of routine laboratory tests were within the normal ranges. Thoracic spinal magnetic resonance imaging showed a well-defined, solid mass in the right paravertebral region at the T5-T8 level, measuring 7.5 cm × 4.2 cm × 1.5 cm. To accurately locate the lesion during surgery, O-arm intraoperative imaging was used in conjunction with the Stealth Station navigation system. The tumor was completely excised and no related complications occurred. The tumor was an encapsulated mass with a solid, homogenous, grayish-tan cut surface. Histopathological examinations confirmed that the mass was a ganglioneuroma. Conclusions: Ganglioneuroma is a rare, benign tumor. Prior to treatment, a careful imaging evaluation is necessary in order to obtain an accurate diagnosis. A definitive diagnosis can be made by histological examination. En bloc resection is the preferred treatment for ganglioneuroma as it has an excellent prognosis.展开更多
Schwannomas are the most common type of spinal tumor, and they most commonly occur in intradural extramedullary locations. Intramedullary schwannomas of the central nervous system are very rare and are difficult to di...Schwannomas are the most common type of spinal tumor, and they most commonly occur in intradural extramedullary locations. Intramedullary schwannomas of the central nervous system are very rare and are difficult to diagnose using preoperative imaging. Here, we report a rare, tiny cervical intramedullary schwannoma and review the literature regarding the clinical presentation, magnetic resonance imaging, pathology,and surgical experience associated with this rare tumor type.展开更多
Spinal ependymomas(SEs) are common adult intramedullary tumors; however,determining the absolute boundary between the tumor and the tumor residual may be difficult. We assessed outcomes following the use of fluorescei...Spinal ependymomas(SEs) are common adult intramedullary tumors; however,determining the absolute boundary between the tumor and the tumor residual may be difficult. We assessed outcomes following the use of fluorescein sodium(FS) during surgical removal of SEs. We performed a retrospective analysis of 112 patients with SEs who were treated at Beijing Tsinghua Changgung Hospital between December 2014 and December 2016. Each patient received intravenous FS(3–4 mg/kg) to determine the SE boundaries during surgery. Tumor removal efficiencies and tumor residuals were assessed using magnetic resonance imaging(MRI) at 10 days and 3 months after surgical recovery; McC ormick's spinal function classification was also performed at the 3-month follow-up. The complete tumor removal rate was 92%(103/112). Ninetyfour patients underwent tumor removal under fluorescent light, which provided distinctive tumor fluorescence. Tumor removal under white light was performed in18 patients; fluorescent images were invisible or indistinctive in these 18 patients. At the 3-month follow-up, sensory function(85.8%(91/106)) and movement(84.3%(86/102)) were improved in patients with pre-surgical dysfunction; urination and defecation functions were improved in 66.7%(16/24). The Mc Cormick spinal cord functional classifications, at the 3-month follow-up, showed significant differences in the percentages of patients with disease classified to each grade(I–IV), compared with preoperative classifications(each, P < 0.05). There was no MRI evidence of tumor relapse or residuals at the 3-month follow-up. FS use during the surgical treatment of SE enables complete tumor removal and detection of tumor residuals.展开更多
基金financially supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800104)the National Natural Science Foundation of China(51822203,52002140,U20A20252,51861145404,62105293,62205187)+4 种基金the Young Elite Scientists Sponsorship Program by CAST,the Self-determined and Innovative Research Funds of HUST(2020KFYXJJS008)the Natural Science Foundation of Hubei Province(ZRJQ2022000408)the Shenzhen Science and Technology Innovation Committee(JCYJ20180507182257563)Fundamental Research Program of Shanxi Province(202103021223032)the Innovation Project of Optics Valley Laboratory of China(OVL2021BG008)。
文摘Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0704402,2018YFB2201801,2018YFE0201200,and 2020YFB2205800)National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.
基金supported by the Chinese National Key Basic Research Special Fund(Nos.2018YFA0704402,2018YFB2201801,and 2018YFE0201200)the National Key ResearchandDevelopmentProgramofChina(No.2020YFB2205800)+2 种基金the National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)the Natural Science Foundation of Jiangsu Province(No.BK20200334)the Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘We propose and experimentally demonstrate the programmable photonic radio frequency(RF)filters based on an integrated Fabry-Pérot laser with a saturable absorber(FP-SA).Owing to the high output power and the relative flatness spectrum of the FP-SA laser,only a waveshaper and an erbium-doped fiber amplifier(EDFA)were needed,which can greatly reduce the complexity of the system.The sinc filter employed 87 taps,representing a record-high tap number and resulting in a 3-d B bandwidth of 0.27 GHz and a quality factor of 148.Furthermore,Gaussian apodization enabled the out-of-band rejection of the filter to reach 34 d B and the center frequency to be finely tuned over a wide range,spanning from 4 to 14 GHz.These results indicate that the proposed scheme could provide a promising guideline for the photonic RF filters that demand both high reconfigurability and greatly reduced size and complexity.
基金supported in part by the Chinese National Key Basic Research Special Fund(Nos.2017YFA0206401,2018YFA0704402,2018YFE0201200,and 2018YFB2201801)National Natural Science Foundation of China(Nos.62004094 and 61975075)+2 种基金Natural Science Foundation of Jiangsu Province of China(No.BK20200334)Jiangsu Science and Technology Project(Nos.BE2019101 and BE2017003-2)Suzhou Technological Innovation of Key Industries(No.SYG201844).
文摘In this Letter,we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback(DFB)laser array.The lasers are placed in series to avoid the usage of an optical combiner and additional power loss.A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth.Besides,the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase.We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB.The output power of all the channels is above 14 mW.The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers.A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels,and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation.The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing(WDM)systems,such as next-generation front-haul networks and passive optical networks.
基金supported by the Chinese National Key Basic Research Special Fund(Nos.2017YFA0206401,2018YFA0704402,2018YFB2201801,and 2018YFE0201200)National Key Research and Development Program of China(No.2020YFB2205800)+2 种基金National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2).
文摘A wideband wavelength-tunable 4×5 distributed feedback(DFB)semiconductor laser array based on the reconstructionequivalent-chirp(REC)technique using a simple tuning scheme is demonstrated.It consists of 20 DFB lasers with 4×5matrix interleaving distributions,two-level cascaded Y-branch optical combiners,and one active semiconductor opticalamplifier(SOA),all in-series integrated on one chip.Unlike the traditional thermal-electric cooler(TEC)-based wavelength-tuning scheme,the tunable 4×5 REC-DFB laser array achieves a faster and broader continuous wavelength-tuningrange using TaN thin-film heaters integrated on the AlN submount.By changing the injection current of the TaN resistorfrom 0 to 190 mA,the proposed tunable laser achieves a wavelength-tuning range of∼2.5 nm per channel and a total tuningof over 50 nm.This study opens up new avenues for realizing cost-effective and wide-tuning-range semiconductor lasers.
基金This work was supported in part by the National Key R&D Program of China(No.2018YFA0704402)National Natural Science Foundation of China(Nos.61974165 and 61975075)+1 种基金National Natural Science Foundation of China for the Youth(No.62004105)Science and Technology Project,and Natural Science Foundation of Jiangsu Province(No.BE2019101)。
文摘We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.
基金the National Natural Science Foundation of China(grant 81472817).
文摘The accuracy and safety of pedicle screw insertion was markedly improved with the introduction of intraoperative three-dimensional navigation system during the last decade. This study aimed to evaluate the accuracy of pedicle screw placement using O-arm-based navigation system versus conventional freehand technique. Methods: We reviewed the accuracy of 341 thoracic (n = 173) and lumbosacral (n = 168) pedicle screws placed in 60 consecutive patients using either O-arm-based navigation or freehand technique in the Department of Neurosurgery of Beijing Tsinghua Changgung Hospital between January 2015 and June 2018. Patient-specific characteristics, treatment-related characteristics, and screw-specific accuracy were analyzed. The accuracy of pedicle screw placement was measured by Gertzbein-Robbins scale and screw grades A and B were clinically acceptable. Results: One hundred ninety-one screws were inserted in the O-arm-based navigation group and 150 in the freehand group. One hundred eighty-three (95.81%) clinically acceptable screws were placed in the navigation group and 135 (90.00%) in the freehand group (p = 0.034). Twenty-three (6.74%) screw revisions were performed in the two groups (8 screws in the navigation group and 15 screws in the freehand group) and significant difference was observed in thoracic spine (p = 0.018), while no statistical significance was presented in lumbosacral spine (p >0.05). Twenty-four (12.57%) screws in the navigation group and 24 (16.00%) in the freehand group violated the cortex (p > 0.05). Medial screw deviation was the most common problem in the two groups. Conclusion: The O-arm-based navigation exhibits higher accuracy for pedicle screw insertion than the freehand insertion technique.
基金Supported by the Beijing Tsinghua Changgung Hospital Fund(No.12015C1045)
文摘This study explored the combined use of the O-arm and real-time navigation during spinal fixation. The clinical data for 60 patients undergoing spinal fixation, at Beijing Tsinghua Chang Gung Hospital between May 5, 2015 and May 1, 2017, were retrospectively analyzed. Pre-, intra-, and postoperative imaging findings were assessed. The patients were classified into the occipitocervical fusion(32 cases) and thoracic/lumbar/sacral spine fixation(28 cases, including 6 cases of percutaneous pedicle screw) groups. Lesion resections were performed microscopically. An O-arm, combined with real-time navigation, was used to assess spinal fixation. Efficacy was evaluated using operative times, X-ray times, screw positioning, and complications. Within the occipitocervical fusion group, 182 screws were placed in the cervical spine and 96 in the occipital bone. However, 6 screws penetrated the bone cortex and were adjacent to the vertebral arteries, based on O-arm three-dimensional imaging; therefore, the precision rate was 96.7%. Within the thoracic/lumbar/sacral spine fixation group, 148 pedicle screws were implanted, with 4 initially outside the vertebral body,yielding a precision rate of 97.3%. Ten percutaneous pedicle screws were implanted and well positioned. O-arm scans were performed 3 times/patient, with an average of 20–30 min/time. Screw implantation times were 5–7 min(cervical spine), 8–10 min(thoracic spine), and 6–8 min(lumbar spine). Intraoperative O-arm scans, combined with real-time navigation technology, allow real-time observation of screw angles and depths, improving the accuracy and safety of posterior screw fixations and reducing the radiation dose and frequency experienced by patients and surgeons.
基金Supported by the Beijing Tsinghua Changgung Hospital Fund(grant No.12015C1045)National Natural Science Foundation of China(grant No.81472817)Beijing Municipal Administration of Hospitals Incubating Program(grant No.PX2016066)
文摘Objectives: Ganglioneuroma is a rare, benign neurogenic tumor arising from the sympathetic ganglia. In this report, we reviewed and summarized the clinical features,treatment, and prognosis of a posterior mediastinal ganglioneuroma. Case: Here, we report on a 29-year-old man referred to us with transient pain in the right side of the chest, lasting for three days. Physical examination revealed no abnormalities.The results of routine laboratory tests were within the normal ranges. Thoracic spinal magnetic resonance imaging showed a well-defined, solid mass in the right paravertebral region at the T5-T8 level, measuring 7.5 cm × 4.2 cm × 1.5 cm. To accurately locate the lesion during surgery, O-arm intraoperative imaging was used in conjunction with the Stealth Station navigation system. The tumor was completely excised and no related complications occurred. The tumor was an encapsulated mass with a solid, homogenous, grayish-tan cut surface. Histopathological examinations confirmed that the mass was a ganglioneuroma. Conclusions: Ganglioneuroma is a rare, benign tumor. Prior to treatment, a careful imaging evaluation is necessary in order to obtain an accurate diagnosis. A definitive diagnosis can be made by histological examination. En bloc resection is the preferred treatment for ganglioneuroma as it has an excellent prognosis.
基金Supported by the Beijing Tsinghua Changgung Hospital Fund(No.12015C1044)
文摘Schwannomas are the most common type of spinal tumor, and they most commonly occur in intradural extramedullary locations. Intramedullary schwannomas of the central nervous system are very rare and are difficult to diagnose using preoperative imaging. Here, we report a rare, tiny cervical intramedullary schwannoma and review the literature regarding the clinical presentation, magnetic resonance imaging, pathology,and surgical experience associated with this rare tumor type.
基金Supported by the Beijing Tsinghua Changgung Hospital Fund(No.12015C1045)
文摘Spinal ependymomas(SEs) are common adult intramedullary tumors; however,determining the absolute boundary between the tumor and the tumor residual may be difficult. We assessed outcomes following the use of fluorescein sodium(FS) during surgical removal of SEs. We performed a retrospective analysis of 112 patients with SEs who were treated at Beijing Tsinghua Changgung Hospital between December 2014 and December 2016. Each patient received intravenous FS(3–4 mg/kg) to determine the SE boundaries during surgery. Tumor removal efficiencies and tumor residuals were assessed using magnetic resonance imaging(MRI) at 10 days and 3 months after surgical recovery; McC ormick's spinal function classification was also performed at the 3-month follow-up. The complete tumor removal rate was 92%(103/112). Ninetyfour patients underwent tumor removal under fluorescent light, which provided distinctive tumor fluorescence. Tumor removal under white light was performed in18 patients; fluorescent images were invisible or indistinctive in these 18 patients. At the 3-month follow-up, sensory function(85.8%(91/106)) and movement(84.3%(86/102)) were improved in patients with pre-surgical dysfunction; urination and defecation functions were improved in 66.7%(16/24). The Mc Cormick spinal cord functional classifications, at the 3-month follow-up, showed significant differences in the percentages of patients with disease classified to each grade(I–IV), compared with preoperative classifications(each, P < 0.05). There was no MRI evidence of tumor relapse or residuals at the 3-month follow-up. FS use during the surgical treatment of SE enables complete tumor removal and detection of tumor residuals.