Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,...Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,two JWB effectors,SJP1 and SJP2,were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux.However,the pathogenesis of JWB disease remains largely unknown.Here,tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection.JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence,including auxin,abscisic acid(ABA),ethylene,jasmonic acid,and salicylic acid.JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds.ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant.Furthermore,the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube.Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli.In addition,ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling,especially by binding to and suppressing ABA receptors.Therefore,these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion,providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.展开更多
Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve th...Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.展开更多
With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is vio...With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.展开更多
An integrated energy system(IES)contributes to improving energy efficiency and promoting sustainable energy development.For different dynamic characteristics of the system,such as demand/response schemes and complex c...An integrated energy system(IES)contributes to improving energy efficiency and promoting sustainable energy development.For different dynamic characteristics of the system,such as demand/response schemes and complex coupling characteristics among energy sources,siting and sizing of multitype energy storage(MES)are very important for the economic operation of the IES.Considering the effect of the diversity of the IES on system reserve based on electricity,gas and heat systems in different scenarios,a two-stage MES optimal configuration model,considering the system reserve value,is proposed.In the first stage,to determine the location and charging/discharging strategies,a location choice model that minimizes the operating cost,considering the system reserve value,is proposed.In the second stage,a capacity choice model,to minimize the investment and maintenance cost of the MES,is proposed.Finally,an example is provided to verify the effectiveness of the MES configuration method in this paper in handling operational diversity and ensuring system reserve.Compared with the configuration method that disregards the system reserve value,the results show that the MES configuration method proposed in this paper can reduce the annual investment cost and operating cost and improve the system reserve value.展开更多
With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results...With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms.展开更多
Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating h...Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating high-performance hybrid electrodes for supercapacitors.However,multistep reactions are usually required to obtain these multicomponent systems,thus giving rise to the complicated and time-consuming issues.Herein,we for the first time,demonstrate a green one-pot method to anchor coaxial double-layer MnO_(2)/Ni(OH)_(2)nanosheets on electrospun carbon nanofibers(CNFs)(denoted as MNC),where the intermediate MnO_(2)layer serves as the“nanoglue”to couple the vertically aligned Ni(OH)_(2)nanosheets and conductive CNFs.Benefiting from the unique chemical composition and hierarchical architecture,the resultant electrode delivers outstanding electrochemical performance,including an excellent specific capacitance(1133.3 F g^(-1)at 1 A g^(-1))and an ultrahigh rate capability(844.4 F g^(-1)at 20 A g^(-1)).Moreover,the asymmetric supercapacitor assembled by using the MNC as positive electrode and the CNF as negative electrode can achieve an optimal energy density of 35.1 Wh kg^(-1)and a maximum power density of 8000 W kg^(-1).The one-pot strategy that stabilizes electroactive metal hydroxides on conductive carbons using a MnO_(2)“nanoglue”to design advanced hybrid electrodes is expected to be broadly applicable not only to the supercapacitor technology but also to other electrochemical applications.展开更多
Transition metal phosphides(TMPs)have been extensively and deeply researched as electrode materials for energy-related applications.However,the inferior stability is still a bottleneck restricting their substantive de...Transition metal phosphides(TMPs)have been extensively and deeply researched as electrode materials for energy-related applications.However,the inferior stability is still a bottleneck restricting their substantive development.Herein,a freestanding three-dimensional hierarchical nanostructure(marked as CC@NC/NiCo-P)is delicately designed for high-performance supercapacitors and electrocatalytic hydrogen evolution,where the nitrogen-doped carbon(NC)layer derived from polydopamine serves as an interface coupling bridge for anchoring electroactive nickel cobalt phosphide(NiCo-P)nanowire arrays on flexible carbon cloth(CC)substrate.Thanks to the robust interaction between the conductive carbon support and NiCo-P nanowires,the resultant CC@NC/NiCo-P electrode delivers an ultrahigh capacitance(2175.5 F/g at 1 A/g)and a distinguished rate capability with a capacity retention of 85.8%.The assembled asymmetric supercapacitor can achieve a superior energy density of 28.47 Wh/kg and an ultralong lifespan of 10000 cycles.In addition,the CC@NC/NiCo-P electrode shows favorable electrocatalytic activity toward the hydrogen evolution reaction.These results indicate that the strong binding between the NC layer and metal species in TMPs notably improves the stability and electrochemical activity of CC@NC/NiCo-P.It is expected that this effective strategy to design innovative electrode materials may be promising for the applications in energy-related fields.展开更多
基金supported by the National Natural Science Foundation of China(31971687 and 32002007)the Anhui Province Key Research and Development Program(202004a06020008)+1 种基金the Natural Science Foundation of Anhui Province(2008085QC127)the Natural Science Foundation of Anhui Provincial Department of Education(KJ2019A0186).
文摘Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,two JWB effectors,SJP1 and SJP2,were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux.However,the pathogenesis of JWB disease remains largely unknown.Here,tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection.JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence,including auxin,abscisic acid(ABA),ethylene,jasmonic acid,and salicylic acid.JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds.ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant.Furthermore,the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube.Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli.In addition,ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling,especially by binding to and suppressing ABA receptors.Therefore,these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion,providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
基金This work is supported by the National Natural Science Foundation of China(62072465)the Key-Area Research and Development Program of Guang Dong Province(2019B010107001).
文摘Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.
基金supported by National Natural Science Foundation of China(No.52277083).
文摘With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.
基金supported in part by the National Key R&D Program of China(No.2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(No.SGTJDK00DWJS1800232).
文摘An integrated energy system(IES)contributes to improving energy efficiency and promoting sustainable energy development.For different dynamic characteristics of the system,such as demand/response schemes and complex coupling characteristics among energy sources,siting and sizing of multitype energy storage(MES)are very important for the economic operation of the IES.Considering the effect of the diversity of the IES on system reserve based on electricity,gas and heat systems in different scenarios,a two-stage MES optimal configuration model,considering the system reserve value,is proposed.In the first stage,to determine the location and charging/discharging strategies,a location choice model that minimizes the operating cost,considering the system reserve value,is proposed.In the second stage,a capacity choice model,to minimize the investment and maintenance cost of the MES,is proposed.Finally,an example is provided to verify the effectiveness of the MES configuration method in this paper in handling operational diversity and ensuring system reserve.Compared with the configuration method that disregards the system reserve value,the results show that the MES configuration method proposed in this paper can reduce the annual investment cost and operating cost and improve the system reserve value.
基金This work was supported in part by the National Natural Science Foundation of China(No.51607025).
文摘With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms.
基金supported by the research grants from National Natural Science Foundation of China(52103057)Natural Science Foundation of Shandong Province,China(ZR2019BEM001)China Postdoctoral Science Foundation(2018M630745).
文摘Constructing“nanoglue”between inorganic electroactive species and conductive carbon scaffolds is an effective strategy to improve their compatibility and binding interaction,holding a great promise for fabricating high-performance hybrid electrodes for supercapacitors.However,multistep reactions are usually required to obtain these multicomponent systems,thus giving rise to the complicated and time-consuming issues.Herein,we for the first time,demonstrate a green one-pot method to anchor coaxial double-layer MnO_(2)/Ni(OH)_(2)nanosheets on electrospun carbon nanofibers(CNFs)(denoted as MNC),where the intermediate MnO_(2)layer serves as the“nanoglue”to couple the vertically aligned Ni(OH)_(2)nanosheets and conductive CNFs.Benefiting from the unique chemical composition and hierarchical architecture,the resultant electrode delivers outstanding electrochemical performance,including an excellent specific capacitance(1133.3 F g^(-1)at 1 A g^(-1))and an ultrahigh rate capability(844.4 F g^(-1)at 20 A g^(-1)).Moreover,the asymmetric supercapacitor assembled by using the MNC as positive electrode and the CNF as negative electrode can achieve an optimal energy density of 35.1 Wh kg^(-1)and a maximum power density of 8000 W kg^(-1).The one-pot strategy that stabilizes electroactive metal hydroxides on conductive carbons using a MnO_(2)“nanoglue”to design advanced hybrid electrodes is expected to be broadly applicable not only to the supercapacitor technology but also to other electrochemical applications.
基金the National Natural Science Foundation of China,Grant/Award Number:52103057Natural Science Foundation of Shandong Province,China,Grant/Award Number:ZR2019BEM001China Postdoctoral Science Foundation,Grant/Award Number:2018M630745。
文摘Transition metal phosphides(TMPs)have been extensively and deeply researched as electrode materials for energy-related applications.However,the inferior stability is still a bottleneck restricting their substantive development.Herein,a freestanding three-dimensional hierarchical nanostructure(marked as CC@NC/NiCo-P)is delicately designed for high-performance supercapacitors and electrocatalytic hydrogen evolution,where the nitrogen-doped carbon(NC)layer derived from polydopamine serves as an interface coupling bridge for anchoring electroactive nickel cobalt phosphide(NiCo-P)nanowire arrays on flexible carbon cloth(CC)substrate.Thanks to the robust interaction between the conductive carbon support and NiCo-P nanowires,the resultant CC@NC/NiCo-P electrode delivers an ultrahigh capacitance(2175.5 F/g at 1 A/g)and a distinguished rate capability with a capacity retention of 85.8%.The assembled asymmetric supercapacitor can achieve a superior energy density of 28.47 Wh/kg and an ultralong lifespan of 10000 cycles.In addition,the CC@NC/NiCo-P electrode shows favorable electrocatalytic activity toward the hydrogen evolution reaction.These results indicate that the strong binding between the NC layer and metal species in TMPs notably improves the stability and electrochemical activity of CC@NC/NiCo-P.It is expected that this effective strategy to design innovative electrode materials may be promising for the applications in energy-related fields.