Background:Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart.Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocy...Background:Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart.Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes.However,it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth.We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth.Methods:Adult C57 BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth.Oral treatment with vascular endothelial growth factor receptor 3(VEGFR3) inhibitor SAR1 3 1 675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation.Furthermore,human dermal lymphatic endothelial cell(LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy.Results:Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels.VEGFR3 was upregulated in the exercised heart,while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes,which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise.Furthermore,LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulinlike growth factor-1 and the extracellular protein Reelin,while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects.Functional rescue assays further demonstrated that protein kinase B(AKT) activation,as well as reduced CCAAT enhancer-binding protein beta(C/EBPβ) and increased CBP/p300-interacting transactivators with E(glutamic acid)/D(aspartic acid)-rich-carboxylterminal domain 4(CITED4),contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation.Conclusion:Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation,and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis.These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.展开更多
Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fi...Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fifty-four rats were divided into three groups randomly and 18 rats in each group.The groups respectively were the model group(group M,n=18),cluster needling at scalp points group(group C,n=18),false operation group(group F,n=18).Each group was then assigned in three subgroups,including 24-h,7-day,and 14-day subgroups.Six rats in each subgroup.Acupuncture at Baihui(GV20)and 2 points beside Baihui,which was 3 e4 mm away from the midline.Longa score was used to evaluated neurological effects.Proteomics methods were used to identify differentially expression proteins with a standard of fold change greater than 1.5 and P<.05 at different times.Results:1.Nerve function scoring:The nerve function scores at 7 and 14 days decreased in group C,which showed better neural function than group M(P<.05).2.Fold change in proteins:Group M showed932 differentially expressed proteins compared with group F,and among them,414 proteins showed significant changes in expression after acupuncture.The expression levels of Cdc42 and GFAP were increased,and Mag,Shank2,and MBP levels were decreased.In the Gene Ontology analysis,the cellular component consisted of the terms cytoplasm,cytoskeleton,lysosome,and plasma membrane.The main related biological processes were cellecell signaling,protein transport,aging,and cell adhesion.Many synaptic and metabolic pathways were found by KEGG analysis.Conclusion:Cluster needling at scalp acupoints can improve the nerve function score and improve dyskinesia in MCAO model rats.Cluster needling at scalp acupoints can regulate the expression of 414 proteins,including Cdc42,GFAP,Mag,Shank2,and MBP,which are related to cerebral ischemia.The differential proteins are major concentration in cytoplasm,cytoskeleton,lysosomes,and plasma membrane,participate in cellecell signaling,protein transport,aging,and cell adhesion,and act through multiple synaptic and metabolic pathways to exert their biological functions.展开更多
Bacterial infection and scar formation remain primary challenges in wound healing.To address these issues,we developed a decellularized pomelo peel(DPP)functionalized with an adhesive PVA-TSPBA hydrogel and antibacter...Bacterial infection and scar formation remain primary challenges in wound healing.To address these issues,we developed a decellularized pomelo peel(DPP)functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs.The hybrid wound dressing demonstrates favorable biocompatibility.It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration,endothelial angiogenesis,and M2 macrophage polarization.Additionally,the dressing can scavenge reactive oxygen species(ROS)and provide antioxidant effects.Furthermore,DPP+MOF@Gel effectively inhibits the viability of S.aureus and E.coli in vitro and in vivo.The histological observations revealed enhanced granulation tissue formation,re-epithelialization,and angiogenesis in the DPP+MOF@Gel group compared to other groups.The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP+MOF@Gel treatment.The skin incision stitching experiment further exhibits DPP+MOF@Gel could reduce scar formation during wound healing.Taken together,the hybrid DPP+MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.展开更多
Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the cataly...Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the catalytic activity were investigated.The results show that the catalyst calcined at 450℃(Cat-B)exhibits the outstanding catalytic performance,and the Cat-B catalyst possesses 90% conversion of CB at148℃.The excellent catalytic activity of Cat-B is attributed to more Ce^(3+)/(Ce^(3+)+Ce^(4+)),Pt~0/(Pt^(0)+Pt^(2+)),O_(ads)/(O_(latt)+O_(ads)) and Lewis acid sites.The degradation mechanism is proposed based on the analysis of the intermediates with the following reaction pathway:chlorobenzene→phenates/benzoquinone→acetate→maleate→CO_(2)+H_(2)O.展开更多
Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regene...Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration.In this study,we developed an orthogonally woven three-dimensional(3D)nanofiber scaffold combining electrospinning,weaving,and modified gas-foaming technology.The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment.In vitro,the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties,good cell compatibility,and easy drug loading.In vivo,for one thing,the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion.Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio,granulation tissue formation,collagen deposition,and re-epithelialization.Taken together,this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration.展开更多
Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides.Herein,K ions were introduced into manganese oxides by different methods to improve the degradatio...Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides.Herein,K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene.The results of activity experiments indicated that KMnO_(4)-HT(HT:Hydrothermal method)exhibited outstanding low-temperature catalytic activity,and 90%conversion of toluene can be achieved at 243℃,which was 41℃and 43℃lower than that of KNO_(3)-HT and Mn-HT,respectively.The largest specific surface area was observed on KMnO_(4)-HT,facilitating the adsorption of toluene.The formation of cryptomelane structure over KMnO_(4)-HT could contribute to higher content of Mn^(3+)and lattice oxygen(Olatt),excellent low-temperature reducibility,and high oxygen mobility,which could increase the catalytic performance.Furthermore,two distinct degradation pathways were inferred.PathwayⅠ(KMnO_(4)-HT):toluene→benzyl→benzoic acid→carbonate→CO_(2)and H2O;PathwayⅡ(Mn-HT):toluene→benzyl alcohol→benzoic acid→phenol→maleic anhydride→CO_(2)and H2O.Fewer intermediates were detected on KMnO_(4)-HT,indicating its stronger oxidation capacity of toluene,which was originated from the doping of K^(+)and the interaction between K-O-Mn.More intermediates were observed on Mn-HT,which can be attributed to the weaker oxidation ability of pure Mn.The results indicated that the doping of K^(+)can improve the catalytic oxidation capacity of toluene,resulting in promoted degradation of intermediates during the oxidation of toluene.展开更多
Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In thi...Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.展开更多
A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃....A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O.The fresh catalyst showed above 90% NOx conversion at 201–459℃,which is applicable to diesel exhaust NOx purification(200–440℃).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300℃),while the activity was notably enhanced at high temperature(above 450℃).The aged CZW catalyst(hydrothermal aging at 700℃ for 8 hr)showed almost 80% NOx conversion at 229–550℃,while the V2O5–WO3/TiO2 catalyst presented above 80% NOx conversion at 308–370℃.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2–ZrO2 solid solution,amorphous WO3 phase and optimal acidity.In addition,the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.展开更多
基金supported by the grants from National Key Research and Development Project(2018YFE0113500 to JX)National Natural Science Foundation of China(82020108002 and 81911540486 to JX,81970335 and 82170285 to YB)+4 种基金Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-09-E00042 to JX)Science and Technology Commission of Shanghai Municipality(20DZ2255400 and 18410722200 to JX)the“Dawn”Program of Shanghai Education Commission(19SG34 to JX)the Shanghai Rising-Star Program(19QA1403900 to YB)the Science and Technology Commission of Shanghai Municipality(21SQBS00100 to YB).
文摘Background:Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart.Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes.However,it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth.We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth.Methods:Adult C57 BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth.Oral treatment with vascular endothelial growth factor receptor 3(VEGFR3) inhibitor SAR1 3 1 675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation.Furthermore,human dermal lymphatic endothelial cell(LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy.Results:Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels.VEGFR3 was upregulated in the exercised heart,while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes,which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise.Furthermore,LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulinlike growth factor-1 and the extracellular protein Reelin,while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects.Functional rescue assays further demonstrated that protein kinase B(AKT) activation,as well as reduced CCAAT enhancer-binding protein beta(C/EBPβ) and increased CBP/p300-interacting transactivators with E(glutamic acid)/D(aspartic acid)-rich-carboxylterminal domain 4(CITED4),contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation.Conclusion:Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation,and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis.These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
基金National Natural Science Foundation of China(No.81473775)。
文摘Objective:To explore the function of cluster needling at scalp points therapy on regulating differential protein's expression at different time points in middle cerebral artery occlusion(MCAO)model rats.Methods:Fifty-four rats were divided into three groups randomly and 18 rats in each group.The groups respectively were the model group(group M,n=18),cluster needling at scalp points group(group C,n=18),false operation group(group F,n=18).Each group was then assigned in three subgroups,including 24-h,7-day,and 14-day subgroups.Six rats in each subgroup.Acupuncture at Baihui(GV20)and 2 points beside Baihui,which was 3 e4 mm away from the midline.Longa score was used to evaluated neurological effects.Proteomics methods were used to identify differentially expression proteins with a standard of fold change greater than 1.5 and P<.05 at different times.Results:1.Nerve function scoring:The nerve function scores at 7 and 14 days decreased in group C,which showed better neural function than group M(P<.05).2.Fold change in proteins:Group M showed932 differentially expressed proteins compared with group F,and among them,414 proteins showed significant changes in expression after acupuncture.The expression levels of Cdc42 and GFAP were increased,and Mag,Shank2,and MBP levels were decreased.In the Gene Ontology analysis,the cellular component consisted of the terms cytoplasm,cytoskeleton,lysosome,and plasma membrane.The main related biological processes were cellecell signaling,protein transport,aging,and cell adhesion.Many synaptic and metabolic pathways were found by KEGG analysis.Conclusion:Cluster needling at scalp acupoints can improve the nerve function score and improve dyskinesia in MCAO model rats.Cluster needling at scalp acupoints can regulate the expression of 414 proteins,including Cdc42,GFAP,Mag,Shank2,and MBP,which are related to cerebral ischemia.The differential proteins are major concentration in cytoplasm,cytoskeleton,lysosomes,and plasma membrane,participate in cellecell signaling,protein transport,aging,and cell adhesion,and act through multiple synaptic and metabolic pathways to exert their biological functions.
基金financially supported by the National Natural Science Foundation of China(grant no.82102334 to S.Chen,grant no.82272204 to J.Pan,grant no.82360446 to W.Wan)Wenzhou Science and Technology Major Project(grant no.ZY2022026 to S.Chen)+2 种基金Pioneer”and“Leading Goose”R&D Program of Zhejiang(grant no.2023C03084 to J.Pan)Foundation of Health Commission of Jiangxi Province(Grant No.202210603 to W.Wan)the“Thousand Talents Plan”of Jiangxi Province Introduces and Trains Innovative and Entrepreneurial High-level Talents(jxsq2023201027).
文摘Bacterial infection and scar formation remain primary challenges in wound healing.To address these issues,we developed a decellularized pomelo peel(DPP)functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs.The hybrid wound dressing demonstrates favorable biocompatibility.It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration,endothelial angiogenesis,and M2 macrophage polarization.Additionally,the dressing can scavenge reactive oxygen species(ROS)and provide antioxidant effects.Furthermore,DPP+MOF@Gel effectively inhibits the viability of S.aureus and E.coli in vitro and in vivo.The histological observations revealed enhanced granulation tissue formation,re-epithelialization,and angiogenesis in the DPP+MOF@Gel group compared to other groups.The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP+MOF@Gel treatment.The skin incision stitching experiment further exhibits DPP+MOF@Gel could reduce scar formation during wound healing.Taken together,the hybrid DPP+MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
基金Project supported by the National Natural Science Foundation of China (21872096)Key Research and Development Project of Henan Province (231111320400)+3 种基金Zhongyuan Yingcai Jihua (ZYYCYU202012183)Academic Leader of Henan Institute of Urban Construction (YCJXSJSDTR202204)College Students'Innovation and Entrepreneurship Training Program of Henan Province(202211765053)Doctoral Research Start-up Project of Henan University of Urban Construction (990/Q2017011)。
文摘Pt-HSiW/CeO_(2) catalysts were prepared for chlorobenzene(CB) catalytic combustion by hydrothermal method at different calcination temperatures,and the effects of the surface acidity and chemical valence on the catalytic activity were investigated.The results show that the catalyst calcined at 450℃(Cat-B)exhibits the outstanding catalytic performance,and the Cat-B catalyst possesses 90% conversion of CB at148℃.The excellent catalytic activity of Cat-B is attributed to more Ce^(3+)/(Ce^(3+)+Ce^(4+)),Pt~0/(Pt^(0)+Pt^(2+)),O_(ads)/(O_(latt)+O_(ads)) and Lewis acid sites.The degradation mechanism is proposed based on the analysis of the intermediates with the following reaction pathway:chlorobenzene→phenates/benzoquinone→acetate→maleate→CO_(2)+H_(2)O.
基金supported by the National Natural Science Foundation of China(grant no.82102334 to S.Chen,grant no.82171622 to L.Liu,grant no.81971832 to L.Yi)The Key Foundation of Zhejiang Provincial Natural Science Foundation(grant no.LZ22C100001 to S.C.)+1 种基金The Wenzhou Science and Technology Major Project(grant no.ZY2022026 to S.Chen)Wenzhou Science and Technology Project(grant no.ZY2023144 to Z.Huang).
文摘Repairing large-area soft tissue defects caused by traumas is a major surgical challenge.Developing multifunctional scaffolds with suitable scalability and favorable cellular response is crucial for soft tissue regeneration.In this study,we developed an orthogonally woven three-dimensional(3D)nanofiber scaffold combining electrospinning,weaving,and modified gas-foaming technology.The developed orthogonally woven 3D nanofiber scaffold had a modular design and controlled fiber alignment.In vitro,the orthogonally woven 3D nanofiber scaffold exhibited adjustable mechanical properties,good cell compatibility,and easy drug loading.In vivo,for one thing,the implantation of an orthogonally woven 3D nanofiber scaffold in a full abdominal wall defect model demonstrated that extensive granulation tissue formation with enough mechanical strength could promote recovery of abdominal wall defects while reducing intestinal adhesion.Another result of diabetic wound repair experiments suggested that orthogonally woven 3D nanofiber scaffolds had a higher wound healing ratio,granulation tissue formation,collagen deposition,and re-epithelialization.Taken together,this novel orthogonally woven 3D nanofiber scaffold may provide a promising and effective approach for optimal soft tissue regeneration.
基金supported by the National Natural Science Foundation of China(No.21872096)Scientific Research Project of Liaoning Provincial Department of Education(No.LJKMZ20220788)+2 种基金Zhongyuan Yingcai Jihua(No.ZYYCYU202012183)the Academic Leader of Henan Institute of Urban Construction(No.YCJXSJSDTR202204)the Doctoral Research Start-up Project of Henan University of Urban Construction(No.990/Q2017011)。
文摘Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides.Herein,K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene.The results of activity experiments indicated that KMnO_(4)-HT(HT:Hydrothermal method)exhibited outstanding low-temperature catalytic activity,and 90%conversion of toluene can be achieved at 243℃,which was 41℃and 43℃lower than that of KNO_(3)-HT and Mn-HT,respectively.The largest specific surface area was observed on KMnO_(4)-HT,facilitating the adsorption of toluene.The formation of cryptomelane structure over KMnO_(4)-HT could contribute to higher content of Mn^(3+)and lattice oxygen(Olatt),excellent low-temperature reducibility,and high oxygen mobility,which could increase the catalytic performance.Furthermore,two distinct degradation pathways were inferred.PathwayⅠ(KMnO_(4)-HT):toluene→benzyl→benzoic acid→carbonate→CO_(2)and H2O;PathwayⅡ(Mn-HT):toluene→benzyl alcohol→benzoic acid→phenol→maleic anhydride→CO_(2)and H2O.Fewer intermediates were detected on KMnO_(4)-HT,indicating its stronger oxidation capacity of toluene,which was originated from the doping of K^(+)and the interaction between K-O-Mn.More intermediates were observed on Mn-HT,which can be attributed to the weaker oxidation ability of pure Mn.The results indicated that the doping of K^(+)can improve the catalytic oxidation capacity of toluene,resulting in promoted degradation of intermediates during the oxidation of toluene.
基金supported by the National Natural Science Foundation of China (Nos.51579099,51521006,and 51508186)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT-13R17)the Hunan Provincial Natural Science Foundation of China (No.2016JJ3076)
文摘Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
基金supported by the National Natural Science Foundation of China(Nos.U1137603,21307047)the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education(No.LYJ1309)
文摘A series of CeO2–ZrO2–WO3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH3 over a wide temperature of 150–550℃.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O.The fresh catalyst showed above 90% NOx conversion at 201–459℃,which is applicable to diesel exhaust NOx purification(200–440℃).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300℃),while the activity was notably enhanced at high temperature(above 450℃).The aged CZW catalyst(hydrothermal aging at 700℃ for 8 hr)showed almost 80% NOx conversion at 229–550℃,while the V2O5–WO3/TiO2 catalyst presented above 80% NOx conversion at 308–370℃.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2–ZrO2 solid solution,amorphous WO3 phase and optimal acidity.In addition,the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.