Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid drople...Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid droplets(LDs)in their cytoplasm during quiescence.Perilipin 5(PLIN 5)is a LD surface-associated protein that plays a crucial role in lipid homeostasis.However,little is known about the role of PLIN 5 in HSC activation.Methods:PLIN 5 was overexpressed in HSCs of Sprague–Dawley rats by lentivirus transfection.At the same time,PLIN 5 gene knockout mice were constructed and fed with a high-fat diet(HFD)for 20 weeks to study the role of PLIN 5 in NAFLD.The corresponding reagent kits were used to measure TG,GSH,Caspase 3 activity,ATP level,and mitochondrial DNA copy number.Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS.AMPK,mitochondrial function,cell proliferation,and apoptosis-related genes and proteins were detected by western blotting and qPCR.Results:Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria,inhibition of cell proliferation,and a significant increase in cell apoptosis through AMPK activation.In addition,compared with the HFD-fed C57BL/6J mice,PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition,decreased LD abundance and size,and reduced liver fibrosis.Conclusion:These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.展开更多
Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSC...Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.展开更多
Objective:Recent evidence indicates that dysregulation of microRNA (miRNA) biogenesis is implicated in cancer development and progression.Based on the important role of miRNA biogenesis genes in carcinogenesis,we h...Objective:Recent evidence indicates that dysregulation of microRNA (miRNA) biogenesis is implicated in cancer development and progression.Based on the important role of miRNA biogenesis genes in carcinogenesis,we hypothesized that genetic variations of the miRNA biogenesis genes may modulate susceptibility to cervical cancer.Methods:We identified three single nucleotide polymorphisms (SNPs) located in the 3'-untranslated regions (3'-UTR) of of miRNA biogenesis key genes (rs1057035 in DICER,rs3803012 in RAN and rs10773771 in HIWI) and genotyped these SNPs in a case-control study of 1,486 cervical cancer cases and 1,549 cancer-free controls in Chinese women.Results:Logistic regression analyses showed that no significant associations were observed between the three SNPs and cervical cancer risk [rs3803012 in RAN AG/GG vs.AA adjusted OR =1.104,95 % confidence interval (CI):0.859-1.419; rs1057035 in DICER CT/CC vs.TT adjusted OR =0.962,95% CI:0.805-1.149;rs10773771 in HIWICT/CC vs.TT adjusted OR =0.963,95% CI:0.826-1.122].Conclusions:The findings did not suggest that genetic variants in the 3'-UTR of RAN,DICER and HIWI of miRNA biogenesis genes were associated with the risk of cervical cancer in this Chinese population.展开更多
Perovskite solar cells(PSCs)are taking steps to commercialization.However,the halogen-reactive anode with high cost becomes a stumbling block.Here,the halogen migration in PSCs is utilized to in situ generate a unifor...Perovskite solar cells(PSCs)are taking steps to commercialization.However,the halogen-reactive anode with high cost becomes a stumbling block.Here,the halogen migration in PSCs is utilized to in situ generate a uniform tunneling layer between the hole transport materials and anodes,which enriches the options of anodes by breaking the Schottky barrier,enabling the regular PSCs with both high efficiency and stability.Specifically,the regular PSC that uses silver iodide as the tunneling layer and copper as the anode obtains a champion power conversion efficiency of 23.24%(certified 22.74%)with an aperture area of 1.04 cm^(2).The devices are stable,maintaining 98.6%of the initial effi-ciency after 500 h of operation at the maximum power point with continuous 1 sun illumination.PSCs with different tunneling layers and anodes are fabricated,which confirm the generality of the strategy.展开更多
Negative Poisson’s ratio(NPR)in auxetic materials is of great interest due to the typically enhanced mechanical properties,which enables plenty of novel applications.In this paper,by employing first-principles calcul...Negative Poisson’s ratio(NPR)in auxetic materials is of great interest due to the typically enhanced mechanical properties,which enables plenty of novel applications.In this paper,by employing first-principles calculations,we report the emergence of NPR in a class of two-dimensional honeycomb structures(graphene,silicene,h-BN,h-GaN,h-SiC,and h-BAs),which are distinct from all other known auxetic materials.They share the same mechanism for the emerged NPR despite the different chemical composition,which lies in the increased bond angle(θ).However,the increase of θ is quite intriguing and anomalous,which cannot be explained in the traditional point of view of the geometry structure and mechanical response,for example,in the framework of classical molecular dynamics simulations based on empirical potential.展开更多
To realize the commercialization of perovskite solar cells(PSCs), it is required to overcome the remaining challenges in device enlargement and operational stability. Here, we report an all-in-one strategy by integrat...To realize the commercialization of perovskite solar cells(PSCs), it is required to overcome the remaining challenges in device enlargement and operational stability. Here, we report an all-in-one strategy by integrating the oxidation of hole-transport material(HTM) with the formation of the passivation layer, which simultaneously solved the stability issues caused by HTM oxidation and realized the uniform defects in passivation over a large area. The resulting devices achieved a certified PCE of23.12% on average with an aperture area of 1.04 cm^(2) and are reproducible with high operational stability because of the exclusion of air exposure, hygroscopic Li-TFSI, and the lithium-based wastes, maintaining ca. 90% of their initial PCEs after operation at the maximum power point under continuous 1 sun illumination for 1,600 h. Our strategy simplifies the fabrication process of PSCs, which is compatible with commercial-scale methods, offering facile access to efficient and stable large-area PSCs.展开更多
The high-performance,wide-range tunable thermal switches play a significant role in the thermal management,high-power-density intelligent devices,energy systems,etc.However,traditional thermal switch components,such a...The high-performance,wide-range tunable thermal switches play a significant role in the thermal management,high-power-density intelligent devices,energy systems,etc.However,traditional thermal switch components,such as thermal diodes,suffer from poor stability,small adjustability,low time efficiency,and difficult implementation.Herein,we propose the superior electric-controlled thermal switch(ECTS)based on Janus monolayer MoSSe.The high-effective and asymmetric regulation of the thermal conductivity driven by electric field demonstrates a wide-range adjustable thermal switch ratio,where the peak value reaches 2.09 under the electric field of 0.04 VÅ^(−1).The underlying mechanism is revealed by electronic structures that the interactions between electrons and phonons are renormalized due to the electric field driving charge density redistribution,which ultimately modulates the phonon anharmonicity.The high-efficiency adjustable ECTS component is expected to provide new inspiration for next-generation thermal management and information processing.展开更多
基金Discipline Key Special ProjectGrant/Award Number:XKZDQY202001+7 种基金Henan Provincial Key R&D and Promotion Special ProjectGrant/Award Number:212102310033Henan Provincial Medical Science and Technology Tackling ProgramGrant/Award Number:LHGJ20220557Key R&D Program of ChinaGrant/Award Number:2020YFC2006100,2020YFC2009000 and 2020YFC2009006National Natural Science Foundation of ChinaGrant/Award Number:31471330 and 81870408。
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid droplets(LDs)in their cytoplasm during quiescence.Perilipin 5(PLIN 5)is a LD surface-associated protein that plays a crucial role in lipid homeostasis.However,little is known about the role of PLIN 5 in HSC activation.Methods:PLIN 5 was overexpressed in HSCs of Sprague–Dawley rats by lentivirus transfection.At the same time,PLIN 5 gene knockout mice were constructed and fed with a high-fat diet(HFD)for 20 weeks to study the role of PLIN 5 in NAFLD.The corresponding reagent kits were used to measure TG,GSH,Caspase 3 activity,ATP level,and mitochondrial DNA copy number.Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS.AMPK,mitochondrial function,cell proliferation,and apoptosis-related genes and proteins were detected by western blotting and qPCR.Results:Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria,inhibition of cell proliferation,and a significant increase in cell apoptosis through AMPK activation.In addition,compared with the HFD-fed C57BL/6J mice,PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition,decreased LD abundance and size,and reduced liver fibrosis.Conclusion:These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
基金supported by the National Natural Science Foundation of China(Grant Nos.11834011 and 12074245)the support from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University。
文摘Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.
文摘Objective:Recent evidence indicates that dysregulation of microRNA (miRNA) biogenesis is implicated in cancer development and progression.Based on the important role of miRNA biogenesis genes in carcinogenesis,we hypothesized that genetic variations of the miRNA biogenesis genes may modulate susceptibility to cervical cancer.Methods:We identified three single nucleotide polymorphisms (SNPs) located in the 3'-untranslated regions (3'-UTR) of of miRNA biogenesis key genes (rs1057035 in DICER,rs3803012 in RAN and rs10773771 in HIWI) and genotyped these SNPs in a case-control study of 1,486 cervical cancer cases and 1,549 cancer-free controls in Chinese women.Results:Logistic regression analyses showed that no significant associations were observed between the three SNPs and cervical cancer risk [rs3803012 in RAN AG/GG vs.AA adjusted OR =1.104,95 % confidence interval (CI):0.859-1.419; rs1057035 in DICER CT/CC vs.TT adjusted OR =0.962,95% CI:0.805-1.149;rs10773771 in HIWICT/CC vs.TT adjusted OR =0.963,95% CI:0.826-1.122].Conclusions:The findings did not suggest that genetic variants in the 3'-UTR of RAN,DICER and HIWI of miRNA biogenesis genes were associated with the risk of cervical cancer in this Chinese population.
基金The authors acknowledge financial support from the National Key R&D Program of China(Nos.2020YFB1506400 and 2021YFB3800068)the National Natural Science Foundation of China(Nos.11834011,12074245,U21A20171 and 52102281)+1 种基金Shanghai Sailing Program(No.21YF1421600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2021QNRC001).
文摘Perovskite solar cells(PSCs)are taking steps to commercialization.However,the halogen-reactive anode with high cost becomes a stumbling block.Here,the halogen migration in PSCs is utilized to in situ generate a uniform tunneling layer between the hole transport materials and anodes,which enriches the options of anodes by breaking the Schottky barrier,enabling the regular PSCs with both high efficiency and stability.Specifically,the regular PSC that uses silver iodide as the tunneling layer and copper as the anode obtains a champion power conversion efficiency of 23.24%(certified 22.74%)with an aperture area of 1.04 cm^(2).The devices are stable,maintaining 98.6%of the initial effi-ciency after 500 h of operation at the maximum power point with continuous 1 sun illumination.PSCs with different tunneling layers and anodes are fabricated,which confirm the generality of the strategy.
基金G.Q.is supported by the Fundamental Research Funds for the Central Universities(Grant No.531118010471)Z.Q.is supported by the National Natural Science Foundation of China(Grant Nos.11904324,11847158)the China Postdoctoral Science Foundation(2018M642774).
文摘Negative Poisson’s ratio(NPR)in auxetic materials is of great interest due to the typically enhanced mechanical properties,which enables plenty of novel applications.In this paper,by employing first-principles calculations,we report the emergence of NPR in a class of two-dimensional honeycomb structures(graphene,silicene,h-BN,h-GaN,h-SiC,and h-BAs),which are distinct from all other known auxetic materials.They share the same mechanism for the emerged NPR despite the different chemical composition,which lies in the increased bond angle(θ).However,the increase of θ is quite intriguing and anomalous,which cannot be explained in the traditional point of view of the geometry structure and mechanical response,for example,in the framework of classical molecular dynamics simulations based on empirical potential.
基金supported by the National Natural Science Foundation of China (11834011, 12074245, 52102281, 51901132)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (2021QNRC001)+1 种基金Shanghai Sailing Program (21YF1421600)the University of Tokyo was supported by JSPS KAKENHI (JP21H02040)。
文摘To realize the commercialization of perovskite solar cells(PSCs), it is required to overcome the remaining challenges in device enlargement and operational stability. Here, we report an all-in-one strategy by integrating the oxidation of hole-transport material(HTM) with the formation of the passivation layer, which simultaneously solved the stability issues caused by HTM oxidation and realized the uniform defects in passivation over a large area. The resulting devices achieved a certified PCE of23.12% on average with an aperture area of 1.04 cm^(2) and are reproducible with high operational stability because of the exclusion of air exposure, hygroscopic Li-TFSI, and the lithium-based wastes, maintaining ca. 90% of their initial PCEs after operation at the maximum power point under continuous 1 sun illumination for 1,600 h. Our strategy simplifies the fabrication process of PSCs, which is compatible with commercial-scale methods, offering facile access to efficient and stable large-area PSCs.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52006057,51906097,11904324,12274374)the Fundamental Research Funds for the Central Universities(Grant Nos.531119200237 and 541109010001)+1 种基金the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body at Hunan University(Grant No.52175013)the Natural Science Foundation of Henan Province of China(Grant No.222300420551).
文摘The high-performance,wide-range tunable thermal switches play a significant role in the thermal management,high-power-density intelligent devices,energy systems,etc.However,traditional thermal switch components,such as thermal diodes,suffer from poor stability,small adjustability,low time efficiency,and difficult implementation.Herein,we propose the superior electric-controlled thermal switch(ECTS)based on Janus monolayer MoSSe.The high-effective and asymmetric regulation of the thermal conductivity driven by electric field demonstrates a wide-range adjustable thermal switch ratio,where the peak value reaches 2.09 under the electric field of 0.04 VÅ^(−1).The underlying mechanism is revealed by electronic structures that the interactions between electrons and phonons are renormalized due to the electric field driving charge density redistribution,which ultimately modulates the phonon anharmonicity.The high-efficiency adjustable ECTS component is expected to provide new inspiration for next-generation thermal management and information processing.